MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Физика -> Система уравнений Максвелла в сплошной среде. Граничные условия

Название:Система уравнений Максвелла в сплошной среде. Граничные условия
Просмотров:93
Раздел:Физика
Ссылка:Скачать(231 KB)
Описание:Содержание

1. Уравнения Максвелла в дифференциальной и интегральной форме.
2

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Министерство науки и образования Украины Днепропетровский Национальный Университет
     Радиофизический факультет Кафедра физики СВЧ Реферат по курсу электродинамики: "Система уравнений Максвелла в сплошной среде. Граничные условия" Выполнил: Студент группы РЭ-01-1 sankoff /sankoff@ukr.net/
     Проверил: Доцент Кафедры оптоэлектроники физического ф-та: В. Д. Гладуш Днепропетровск 2003 Содержание 1. Уравнения Максвелла в дифференциальной и интегральной форме. 2. Граничные условия. 3. Уравнения Максвелла в системе уравнений магнитостатики и электростатики. 4. Пример. 5. Приложение. 1. Формула Остроградского-Гаусса. 2. Формула Стокса. 6. Список используемой литературы.
     1. Уравнения Максвелла в дифференциальной и интегральной формах
    Система уравнений, состоящая из уравнений Максвелла для электромагнитного поля и уравнений Ньютона для частиц, представляет собой единую систему уравнений, описывающую все явления, обусловленные электромагнитным взаимодействием (без учёта релятивистских и квантовых эффектов). Поэтому, строго говоря, их необходимо решать совместно в задачах электродинамики. Однако в такой наиболее общей постановке решать задачи о взаимодействии электромагнитного поля с веществом чрезвычайно трудно. Сложность проблемы заключается в том, что вещество состоит из громадного количества частиц, движение которых каждой в отдельности невозможно описать. С такой проблемой сталкиваются в классической механике при попытках описать механическое движение газов, жидкостей и твёрдых тел. Чтобы обойти эту трудность физикам приходилось строить определённые модели механических систем: модель абсолютно твёрдого тела, модель сплошной среды и др. При изучении взаимодействия заряженных частиц с электромагнитным полем также приходится вводить некоторые модели. Одной из таких широко употребляемых, является модель сплошной среды, состоящая из электрических диполей (диэлектрик). Эта модель электрического диполя играет очень важную роль в физике, так как атомы и молекулы представляют собой системы заряженных частиц, которые в целом нейтральны, но могут обладать отличным от нуля дипольным моментом и поэтому создавать электрическое поле.
    Открытие тока смещения позволило Максвеллу создать единую теорию электрических и магнитных явлений. Эта теория объяснила все известные в то время экспериментальные факты и предсказала ряд новых явлений, существование которых подтвердилось впоследствии. Основным следствием теории Максвелла был вывод о существовании электромагнитных волн, распространяющихся со скоростью света.
    Основу теории образуют уравнения Максвелла. В учении об электромагнетизме эти уравнения играют такую же роль, как законы Ньютона в механике или основные законы (начала) в термодинамике. Ниже приведена полная система уравнений Максвелла классической электродинамики в сплошной среде.
    Первую пару уравнений Максвелла образуют уравнения:
    (1)
     (2) Здесь вектор - вектор напряжённости электрического поля, - вектор индукции магнитного поля. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Программирование системы уравнений
Просмотров:87
Описание: Содержание Введение 1 Постановка задачи 2 Решение системы уравнения методом Гаусса 3 Решение уравнения методами Ньютона, Хорд 4 Разработка блок схемы решения системы уравнения методом Гаусса 5 Разрабо

Название:Системы линейных и дифференциальных уравнений
Просмотров:139
Описание: к/р № 1 1.  Решить матричные уравнения и сделать проверку.   Решение:   Найдём обратную матрицу . Обратной для матрицы А есть матрица , где  - определитель матрицы А, а элементы матрицы A*

Название:Приближённое решение алгебраических и трансцендентных уравнений
Просмотров:112
Описание:        Приближённое решение алгебраических и трансцендентных  уравнений 1. Общая постановка задачи. Найти действительные корни уравнения , где - алгебраическая или трансцендентная функция. Точные методы реш

Название:Нестандартные методы решения уравнений и неравенств
Просмотров:219
Описание: СОДЕРЖАНИЕ ВВЕДЕНИЕ 1 ИСТОРИЧЕСКАЯ СПРАВКА 2 РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ     2.1 Использование монотонности функции 2.2 Использование ограниченности функции 2.3 Использование перио

Название:Нестандартные методы решения тригонометрических уравнений: графический и функциональный
Просмотров:128
Описание: Фрунзенский район Технологическая гимназия №13 г. МинскаАвторы: Кравченко Арсений Борисович ученик 9”Д” класса ул. Горецкого 69-263 д.т. 215-84-33 Ермолицкий Алексей Александрович ученик 9”Д” класса ул.

 
     

Вечно с вами © MaterStudiorum.ru