MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Собственные значения.

Название:Собственные значения.
Просмотров:127
Раздел:Математика
Ссылка:Скачать(36 KB)
Описание:Некоторые основные сведения, необходимые при решении задач на собственные значения. Итерационные методы решения. Определение собственных значений методами преобразований подобия.

Самые свежие новости со всего мира. Мы работаем для вас 24 часа в сутки.
www.24da.ru
Регистрация доменов RU, SU от 400 рублей. Прогрессивные скидки.
www.direg.ru

Часть полного текста документа:

Собственные значения. 1. ВВЕДЕНИЕ
    Целый ряд инженерных задач сводится к рассмотрению систем уравнений, имеющих единственное решение лишь в том случае, если известно значение некоторого входящего в них параметра. Этот особый параметр называется характеристическим, или собственным, значением системы. С задачами на собственные значения инженер сталкивается в различных ситуациях. Так, для тензоров напряжений собственные значения определяют главные нормальные напряжения, а собственными векторами задаются направления, связанные с этими значениями. При динамическом анализе механических систем собственные значения соответствуют собственным частотам колебаний, а собственные векторы характеризуют моды этих колебаний. При расчете конструкций собственные значения позволяют определять критические нагрузки, превышение которых приводит к потере устойчивости.
    Выбор наиболее эффективного метода определения собственных значений или собственных векторов для данной инженерной задачи зависит от ряда факторов, таких, как тип уравнений, число искомых собственных значений и их характер. Алгоритмы решения задач на собственные значения делятся на две группы. Итерационные методы очень удобны и хорошо приспособлены для определения наименьшего и наибольшего собственных значений. Методы преобразований подобия несколько сложней, зато позволяют определить все собственные значения и собственные векторы.
    В данной работе будут рассмотрены наиболее распространенные методы решения задач на собственные значения. Однако сначала приведем некоторые основные сведения из теории матричного и векторного исчислений, на которых базируются методы определения собственных значений. 2. НЕКОТОРЫЕ ОСНОВНЫЕ СВЕДЕНИЯ, НЕОБХОДИМЫЕ ПРИ РЕШЕНИИ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ
    В общем виде задача на собственные значения формулируется следующим образом:
    AX = ?X,
    где A - матрица размерности n х n. Требуется найти n скалярных значений ? и собственные векторы X, соответствующие каждому из собственных значений.
    Основные определения матричного исчисления
    1. Матрица A называется симметричной, если
    аij = аij, где i, j = 1, 2, . . ., n.
    Отсюда следует симметрия относительно диагонали
    аkk, где k == 1, 2, . . ., n.
    Матрица
    
    1 4 5 4 3 7 5 7 2
    является примером симметричной.
    2. Матрица A называется трехдиагональной, если все ее элементы, кроме элементов главной и примыкающих к ней диагоналей, равны нулю. В общем случае трехдиагональная матрица имеет вид
    
     * * 0 * * * * * * . . . . . . * * * 0 * * * * *
    Важность трехдиагональной формы обусловлена тем, что некоторые методы преобразований подобия позволяют привести произвольную матрицу к этому частному виду.
    
    3. Матрица A называется ортогональной, если
    АТА = Е,
    где Ат-транспонированная матрица A, а Е-единичная матрица. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Несобственные интегралы
Просмотров:190
Описание: Дисциплина: «Высшая математика» Тема: «Несобственные интегралы» 1. Несобственные интегралы с бесконечными пределами При введении понятия определенного интеграла, а такж

Название:Определитель матрицы
Просмотров:191
Описание: Дисциплина: Высшая математика Тема: Определитель матрицы 1. Понятие определителя Матрица - это прямоугольная таблица, составленная из чисел. Особое место среди матриц занимают

Название:Определитель матрицы
Просмотров:192
Описание: Оглавление   Задача 1 Задача 2 Задача 3 Задача 4 Задача 5 Задача 1   Вычислить определитель 4-го порядка. Решение: Определитель 4-го порядка находится по формуле:  , где aij – эл

 
     

Вечно с вами © MaterStudiorum.ru

.