Термохемилюминесцентный иммуноанализ
Введение
Люминесценцией называют излучение света в ходе какого-либо процесса. В зависимости от индуцирующего люминесценцию источника энергии ее можно подразделить на физическую люминесценцию и хемилюминесценцию. Физическая люминесценция включает флуоресценцию и фосфоресценцию. В этом случае люминесценция происходит после поглощения световой энергии. Хемилюминесценцией обычно называют излучение света в результате химической реакции. Харви ввел дополнительное ограничение - "при обычной температуре". Позже Селиджер и Макэлрой. Схема реакций представлена на рис. 1.
Люцигенин испускает сине-зеленый свет в присутствии пероксида водорода в щелочной среде. Как показано на рис. 3, многие производные щавелевой кислоты реагируют с Н202, давая электронно-возбужденное промежуточное соединение, которое далее может вступить в реакцию с присутствующим в реакционной смеси соединением, способным к флуоресценции. В оптимальных условиях этот процесс является наиболее эффективным из неферментагивных хемилюминесцентных реакций, известных в настоящее время. Эфиры акридиния вступают в высокоэффективные окислительные хемилюминёсцентные реакции с Н202, давая акридон.
В известной степени эта реакция подобна биолюминесцентной системе люциферин-люцифераза у светляков. Вместе с хемилюминесцентным окислением люминола и близких производных тидразида фталевой кислоты перечисленные реакции широко использовались в хемилюминесцентных аналитических методиках. Во всех указанных реакциях образуется промежуточное соединение одного типа, а именно замещенный четырехчленный 1,2-диоксетан. Диссоциация этого ключевого интермедиа-та приводит к электронно-возбужденным карбонильным соединениям. Следовательно, во всех перечисленных хемилюминесцентных реакциях образуется очень лабильный 1,2-диоксетан, способный диссоциировать, давая люминесцирующее соединение.
За период с 1968 г., когда был синтезирован триметил-1,2-диоксетая, получено более 200 различных хемилюминесцентных 1,2-диоксетанов. Однако эти соединения не привлекли внимания специалистов в области иммуноанализа. Сейчас известно по крайней мере 10 различных методов синтеза 1,2-диоксетанов. Заместителями в этих соединениях могут быть алкильные, арильные, спироалкильные, спироарильные, алкоксильные, арилоксильные, алкиламинные, тиоалкильные и тиоарильные группы. Опубликован ряд обзоров, посвященных 1,2-диоксетанам.
В этих обзорах рассмотрены методы синтеза 1,2-диоксетанов, а также свойства этих соединений. 1,2-Диоксетаны термически распадаются на два карбонильных соединения, одно из которых может быть в первом синглетном или триплетном электронно-возбужденном состоянии. Как показано на рис. 5, возбужденное соединение может испускать свет при переходе в основное состояние или непосредственно, или путем переноса энергии к акцепторной люминесцирующей молекуле А.
Прямая хемилюминесценция 1,2-диоксетанов обычно очень слаба по сравнению с хемилюминесценцией таких соединений, как люминол. Это связано с тем, что большинство кетонов, эфиров и альдегидов, являющихся продуктами диссоциации 1,2-диоксетанов, имеют низкую эффективность флуоресценции.
Энергия активации термического распада большинства 1,2-диоксетанов равна 20-26 ккал/моль. ............