Министерство образования и науки Российской Федерации
Волжский институт строительства и технологий
(филиал)
Волгоградского государственного архитектурно-строительного университета
Факультет МТ
Кафедра ТОМП
Курсовая работа
по дисциплине: «Технология производства»
«Циркониевый электрокорунд, его получение, свойства, применение»
Выполнила: ст.гр. ПМКМП-2-07
Тарасова Я.А.
Проверил: к.т.н., доцент
Орлова Т.Н
Волжский 2010
Содержание
Введение
Циркониевый электрокорунд
Свойства циркониевого электрокорунда
Микроструктура циркониевого электрокорунда
Фазовые равновесия в электрокорунде системы А12О3-ZrO2
Заключение
Список литературы
Введение
В курсовой работе будет рассмотрен технологический процесс плавки циркониевого электрокорунда, особенности его структуры, физических и химических свойств, а также их изменение от скорости охлаждения расплава и др. Данная работа опирается на опыты проводимые во ВНИИАШе под руководством В.В. Карлина, и с участием И.П. Васильева Г.М. Зарецкой и др.
Циркониевый электрокорунд
Циркониевый электрокорунд будем рассматривать как продукт кристаллизации двойной системы. В этой системе, по данным Г. Вартерберга, при массовой доле ZrO2, равной примерно 40 %, появляется эвтектика с температурой плавления 2193 К. Р.Ф. Геллер определил наличие эвтектического сплава при массовой доле в нем ZrO7, равной 55 %, с температурой плавления 2158 К. Поданным японских исследователей температура плавления эвтектики составляет 2163 К. А.С. Бережной, исследуя систему А17О3—ZrO^, построил расчетную диаграмму состояния (рис. 2.42), согласно которой массовая доля ZrO2 в эвтектическом сплаве составляет 32 %, а температура его плавления 2183 К.
Характерной чертой системы А12О3—ZrO2, содержащей 20—25 % ZrO7, является присущая корунду высокая твердость в сочетании с повышенной вязкостью разрушения. При этом наиболее эффективное повышение вязкости разрушения достигается при использовании в композиции тетрагональной формы ZrO2, стабилизируемой введением в материал 2—3 % (по массе) оксида иттрия Y2O3. Стабилизация кубической формы диоксида циркония более высокими концентрациями (5-6 % Y2O3 по массе), напротив, приводит не к повышению, а к снижению вязкости разрушения материала. Моноклинная форма ZrO2 в циркониевом электрокорунде также повышает прочность и вязкость разрушения корунда, но в меньшей степени, чем тетрагональная форма. Это обстоятельство чрезвычайно важно учитывать при получении циркониевого электрокорунда, применяемого для силового шлифования, где роль прочности, ударной вязкости и трещиностойкости абразивного зерна для его эксплуатационных характеристик существенно возрастает. В зависимости от условий кристаллизации существенно изменяются свойства циркониевого корунда (табл. 1). Изменение прочностных показателей зерен циркониевого электрокорунда связано с дефектами его микроструктуры, определяемой наличием микротрещин между корундом и баделеитом, обусловленных различием коэффициентов термического расширения этих минералов и возможными модификационными переходами диоксида циркония. С уменьшением размеров кристаллов циркониевого электрокорунда возрастает их сопротивляемость разрушению. Например, уменьшение кристаллов, образующих эвтектические участки со 150 до 30 мкм, увеличивает сопротивление разрушению зерен крупностью 125 мкм более чем в два раза.
Таблица 1
Некоторые свойства зерен циркониевого электрокорунда в зависимости от скорости охлаждения расплава (по данным ВНИИАШа)
Скорость охлаждения, ◦С/мин
Прочность единичного зерна № 125, Н/зерно Прочность совокупности зерен, %
Насыпная масса, кг/м3
Износостойкость, мин/мм
8
16
60
170
2000
163
197
249
287
351
66,0
79,3
83,1
87,0
87,0
1910
1930
1990
1970
2030
412
470
535
614
1200
Размер кристаллов циркониевого электрокорунда зависит от условий охлаждения расплава. Так, по данным ВНИИАШа, с увеличением скорости охлаждения расплава от 12—20 до 1000— 2000 °С/мин размер первичных кристаллов уменьшается с 300—400 до 30—10 мкм и растет число участков эвтектического строения. ............