Реферат
Тема:
«Учение о параллельности. Открытие неевклидовой геометрии»
Введение
Эвклид – древнегреческий математик, автор первых дошедших до нас теоретических трактатов по математике. Биографические сведения о жизни и деятельности Эвклида крайне ограничены. Известно, что он родом из Афин, был учеником Платона. Научная деятельность его протекала в Александрии, где он создал математическую школу.
Достижения в математике
Главные труды Эвклида «Начала» (латинизированное назв. – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел, алгебры, общей теории отношений и метода определения площадей и объемов, включающего элементы пределов (Метод исчерпывания). В «Началах» Эвклид подытожил все предшествующие достижения греческой математики и создал фундамент для ее дальнейшего развития. Историческое значение «Начал» Эвклида заключается в том, что в них впервые сделана попытка логического построения геометрии на основе аксиоматики. Основным недостатком аксиоматики Эвклида следует считать ее неполноту; нет аксиом непрерывности, движения и порядка, поэтому Эвклиду часто приходилось апеллировать к интуиции, доверять глазу. Книги XIV и XV являются более поздними добавлениями, но являются ли первые тринадцать книг созданием одного человека или школы, руководимой Эвклидом, не известно. С 1482 г. «Начала» Эвклида выдержали более 500 изд. на всех языках мира.
Первые четыре книги «Начал» посвящены геометрии на плоскости, и в них изучаются основные свойства прямолинейных фигур и окружностей.
Книге I предпосланы определения понятий, используемых в дальнейшем. Они носят интуитивный характер, поскольку определены в терминах физической реальности: «Точка есть то, что не имеет частей». «Линия же – длина без ширины». «Прямая линия есть та, которая равно расположена по отношению точкам на ней». «Поверхность есть то, что имеет только длину и ширину» и т.д.
За этими определениями следуют пять постулатов: «Допустим:
1) что от всякой точки до всякой точки можно провести прямую линию;
2) и что ограниченную прямую можно непрерывно продолжить по прямой;
3) и что из всякого центра и всяким раствором может быть описан круг;
4) и что все прямые углы равны между собой;
5) и если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых».
Три первых постулата обеспечивают существование прямой и окружности. Пятый, так называемый постулат о параллельных – самый знаменитый. Он нарочито чужероден, его громоздкая формулировка закономерно вызывает некоторое чувство протеста и желание отыскать для него доказательство, он всегда интриговал математиков, которые пытались вывести его из четырех предыдущих или вообще отбросить. Такие доказательства уже в древности пытались построить Птолемей и Прокл; а в Новое время из этих попыток развилась неевклидова геометрия. Следует отметить, что первые 28 теорем I книги относятся к абсолютной геометрии и в XIX в. обнаружилось, что можно построить другие, неевклидовы геометрии и что пятый постулат имеет право на существование.
Начала Евклида
Начала – главный труд Евклида, написанный около 300 г. ............