МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ПОЛТАВСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Ю. Кондратюка
РЕФЕРАТ
ТЕМА: Внутренние силы и напряжения, возникающие в поперечных сечениях бруса при растяжении и сжатии
Выполнила: студентка V курса
Группа ЕФ145
Михайлова Виктория
Полтава 2009
Под растяжением, понимается такой вид нагружения, при котором в поперечных сечениях бруса (стержня) возникают только нормальные силы, а все прочие внутренние силовые факторы (поперечные силы, крутящий и изгибающий моменты) равны нулю.
Обычным является растяжение стержня силами, приложенными к его концам. Передача усилий к стержню может быть осуществлена различными способами, как это показано на рис. 15. Во всех случаях, однако, система внешних сил образует равнодействующую Р, направленную вдоль оси стержня. Поэтому независимо от условий крепления растянутого стержня расчетная схема в рассматриваемых случаях оказывается единой. Она показана на рис. 15, г.
Если воспользоваться методом сечений, то становится очевидным, что во всех поперечных сечениях стержня возникают нормальные силы N, равные силе Р (рис. 16),
Сжатие отличается от растяжения, формально говоря, только знаком силы N. При растяжении нормальная сила N направлена от сечения, а при сжатии — к сечению. Таким образом, при анализе внутренних сил сохраняется единство подхода к вопросам растяжения и сжатия. Вместе с тем между этими двумя типами нагружения могут обнаружиться и качественные различия, как, например, при изучении процессов разрушения материалов или при исследовании поведения длинных и тонких стержней, для которых сжатие сопровождается, как правило, изгибом.
Рассмотрим напряжения, возникающие в поперечном сечении растянутого стержня. Нормальная сила N является равнодействующей внутренних сил в сечении (рис. 17). Естественно предположить, что для однородного стержня внутренние силы распределены по сечению равномерно. Тогда нормальное напряжение для всех точек сечения будет одним и тем же:
(1.1)
где Р — площадь поперечного сечения.
Понятно, что высказанное предположение о равномерном распределении внутренних сил в поперечном сечении справедливо лишь постольку, поскольку из рассмотрения исключаются особенности конкретно взятого стержня в связи с условиями его закрепления на концах. Здесь руководствуются правилом, которое принято называть принципом Сен-Венана, по имени известного французского ученого прошлого века. Принцип Сен-Венана является общим, но применительно к стержням он может быть сформулирован следующим образом. Особенности приложения внешних сил к растянутому стержню проявляются, как правило, на расстояниях, не превышающих характерных размеров поперечного сечения стержня. Это значит, исключение составляют тонкостенные стержни (см, гл. XI).
Что при изучении растянутого стержня достаточно принимать во внимание только равнодействующую внешних сил Р, не интересуясь особенностями приложения нагрузки. Для этого надо исключить из рассмотрения часть стержня, расположенную в зоне приложения внеших сил. На рис. 15 это как раз и показано. Отбрасывая части стержня, примыкающие к его концам, получаем единую расчетную схему (рис. 15, г), независимо от способа приложения внешних сил.
Приведенные рассуждения могут быть отнесены также и к особым участкам стержня, содержащим резкое изменение геометрических форм. ............