Часть полного текста документа:Введение в статистику Элементарные понятия статистики Мы выбрали темы, которые иллюстрируют основные предположения большинства статистических методов, предназначенных для понимания "численной природы" действительности (Nisbett, et al., 1987). Мы сосредотачиваем основное внимание на "функциональных" аспектах обсуждаемых понятий, прекрасно понимая, что предлагаемое описание является кратким и не может исчерпать всего предмета обсуждения. Более подробную информацию можно найти во вводных разделах и разделах примеров руководства пользователя системы STATISTICA, а также в учебниках по статистике. Мы рекомендуем следующие учебники: Kachigan (1986) и Runyon and Haber (1976); для углубленного обсуждения элементарной теории и основных понятий статистики см. классическую книгу Kendall and Stuart (1979) (перевод: М.Кендалл и А.Стьюарт "Теория распределений" (том 1), "Статистические выводы и связи" (том 2), "Многомерный статистический анализ" (том 3)). На русском языке см., например, книгу: Боровиков В.П. "Популярное введение в программу STATISTICA", Компьютер Пресс 1998, в которой дается популярное описание основных статистических понятий. Что такое переменные? Переменные - это то, что можно измерять, контролировать или что можно изменять в исследованиях. Переменные отличаются многими аспектами, особенно той ролью, которую они играют в исследованиях, шкалой измерения и т.д. Исследование зависимостей в сравнении с экспериментальными исследованиями. Большинство эмпирических исследований данных можно отнести к одному из названных типов. В исследовании корреляций (зависимостей, связей...) вы не влияете (или, по крайней мере, пытаетесь не влиять) на переменные, а только измеряете их и хотите найти зависимости (корреляции) между некоторыми измеренными переменными, например, между кровяным давлением и уровнем холестерина. В экспериментальных исследованиях, напротив, вы варьируете некоторые переменные и измеряете воздействия этих изменений на другие переменные. Например, исследователь может искусственно увеличивать кровяное давление, а затем на определенных уровнях давления измерить уровень холестерина. Анализ данных в экспериментальном исследовании также приходит к вычислению "корреляций" (зависимостей) между переменными, а именно, между переменными, на которые воздействуют, и переменными, на которые влияет это воздействие. Тем не менее, экспериментальные данные потенциально снабжают нас более качественной информацией. Только экспериментально можно убедительно доказать причинную связь между переменными. Например, если обнаружено, что всякий раз, когда изменяется переменная A, изменяется и переменная B, то можно сделать вывод - "переменная A оказывает влияние на переменную B", т.е. между переменными А и В имеется причинная зависимость. Результаты корреляционного исследования могут быть проинтерпретированы в каузальных (причинных) терминах на основе некоторой теории, но сами по себе не могут отчетливо доказать причинность. Зависимые и независимые переменные. Независимыми переменными называются переменные, которые варьируются исследователем, тогда как зависимые переменные - это переменные, которые измеряются или регистрируются. Может показаться, что проведение этого различия создает путаницу в терминологии, поскольку как говорят некоторые студенты "все переменные зависят от чего-нибудь". ............ |