MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Иностранный язык -> Is the nature of quantum chaos classical?

Название:Is the nature of quantum chaos classical?
Просмотров:73
Раздел:Иностранный язык
Ссылка:Скачать(45 KB)
Описание:Предложена теория, позволяющая описывать квантовый хаос в терминах нелинейной классической динамики.

Часть полного текста документа:

Is the nature of quantum chaos classical?
    K.N. Yugay, S.D. Tvorogov, Omsk State University, General Physics Department, pr.Mira,55-A 644077 Omsk, RUSSIA Institute of Atmosphere Optics of Russian Academy of Sciences
    Recently discussions about what is a quantum chaos do not abate [1-16]. Some authors call in question the very fact of an existence of the quantum chaos in nature [8]. Mainly reason to this doubt is what the quantum mechanics equations of motion for the wave function or density matrix are linear whereas the dynamical chaos can arise only into nonlinear systems. In this sence the dynamical chaos in quantum systems, i.e. the quantum chaos, cannot exist. However a number of experimental facts allow us to state with confidence that the quantum chaos exists. Evidently this contradiction is connected with what our traditional description of nature is not quite adequate to it.
    Reflecting on this problem one cannot but pay attention to the following:
    i) two regin exist - the pure quantum one (QR) and the pure classical one (CR), where descriptions are essentially differed. The way in which the quantum and classical descriptions are not only two differen levels of those, but it seems to be more something greater; the problem of quantum chaos indicates to it. Since experimental manifestations of quantum chaos exist therefore one cannot ignore the question on the nature of quantum chaos and the description of it.
    ii) It undoubtedly that the intermediate quantum-classical region (QCR) exists between the QR and the CR, which must be possessed of characteristics both the QR and the CR. Since the term "quasiclassics" is connected traditionally with corresponding approximate method in the quatum mechanics we shall call this region as quantum-classical one further. It is evident that the QCR is the region of high excited states of quantum systems.
    Below shall show that quantum and classical problems are not autonomous into the QCR but they are coupled with each other, so that a solution of a quantum problem contains a solution of a corresponding classical problem, but not vice versa.
    A possible dynamical chaos of a nonlinear classical problem has an effect on the quantum problem so that one can say quantum chaos arises from depths of the nonlinear classical mechanics and it is completely described in terms of nonlinear dynamics, for example, instability, bifurcation, strange attractor and so on. We shall show also that the connection between the quantum and classical problems is reflected on a phase of a wave function which having a quite classical meaning is subjected to its classical equation of motion and in the case of its nonlinearity into the system the dynamical chaos is excited.
    One of a splendid example of a role of the wave function phase is a description of dynamical chaos in a long Josephson junction [17-24]. Here the wave function phase (the difference phases on a junction) of a superconducting condensate is subjected to the nonlinear dynamical sine-Gordon equation. The dynamical chaos arising in a long Josephson junction and describing by the sine-Gordon equation is a quantum chaos essentially since the question is about a phenomenon having exceptionally the quantum character. However the quantum chaos is described here precisely by the classical nonlinear equation.
    Below we shall try to show that the description of the quantum chaos in the more general case may be carry out just as in a long Josephson junction in terms of nonlinear classical dynamics equations of motion to wich the wave function phase of a quantum is subjected. In addition the quantum system must be into the QCR, i.e. into high excited states.
    Let us assume that the Hamiltonian of a system have the form
    
    where the operator of the potential energy U(x,t) is
    
    (We examine here an one-dimensional system for the simplicity). Here U0(x) is the nonperturbation potential energy, and f(t) is the time-dependent external force.
    We shall found the solution of the Schrodinger equation
    
    in the form
    
    where
    
    , is the solution of the classical equation of motion, is the certain constant, s(t) is the time-dependent function, the sense of that will be clear later on. We notice that the function A(x,t) is real. (A representation of the phase A(x,t) in the form (5) at was introduced first by Husimi [25]).
    Substituting (4) into Eq.(1) and taking into account (5), we get
    
    
    
    
    
    Here subscripts t, y and denote the partial derivatives with respect to time t and coordinates y, , respectively.
    On the right of Eq.(6) the expressions of both square brackets are equal to zero because of following relations:
    i) of the classical equation of motion
    
    
    
    
    
    where is the same potential, that is into (3), and
    ii) of the expression for the classical Lagrang function L(t)
    
    so that the function
    
    makes a sense of an action integral.
    Into Eq.(6)
    
    By deduction of Eq.(6) we made use of an potential energy expansion in the form
    
    It is obvious that the expansion (11) is correct in the case when a classical trajectory is close to a quantum one. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Interpolation, approximation and differential equations solvers
Просмотров:332
Описание: Contents Problem 1 1.1 Problem definition 1.2 Solution of the problem 1.2.1 Linear interpolation 1.2.2 Method of least squares interpolation 1.2.3 Lagrange interpolating polynomial 1.2.4 Cubic spline interpolation 1.3 Results and discussion 1.3.1 Lagrange polynomial Problem 2 2.1 Problem definition 2.2 Problem solution 2.2.1 Rectangular meth

Название:Rise of sociology as an intellectual tradition. Classical tradition in sociology of the XIX century
Просмотров:107
Описание: MINISTERY OF EDUCATION OF THE REPUBLIC OF BELARUS   Belarus State Economic UniversityREFERAT:«Rise of sociology as an intellectual tradition. Classical tradition in sociology of the XIX century»Minsk 2008   1. Rise of sociology as an intellectual tradition   Since ancient times man has been interested in issues of his own living among other peop

Название:Macro-microcosm substance space time quantum
Просмотров:142
Описание:The law of the conservation the full energy is carried out by any processes running as in macro- as in microcosm owing to that kinetic E energy turned to potential П one (and back). It has the next usual form

Название:Редактор формул MS Equation 2.0
Просмотров:175
Описание:Создание и редактирование формул. Специальные символы в формулах. Объекты с индексами. Меню шаблонов дробей и корней. Комментарии о назначении переменных.

Название:Is the nature of quantum chaos classical?
Просмотров:73
Описание:Предложена теория, позволяющая описывать квантовый хаос в терминах нелинейной классической динамики.

 
     

Вечно с вами © MaterStudiorum.ru