Задача №1.
При испытании на растяжение стального цилиндрического образца диаметром __=10мм и начальной расчетной длиной l0=100мм, наибольшая нагрузка, предшествующая разрушению образца, равнялась Р=50000Г
Определите:
- предел прочности при растяжении __,МН/м2(кгс/мм2);
- относительное удлинение __ %, длина образца после разрыва l1=120мм;
- относительное сужение __,%, если площадь в месте разрыва ___=70мм2
[1МН/м2 = 0.1кгс/мм2]
Решение:
___=РB/(l0*__)=50000Н/(10мм*100мм)=50МН/м2 = 5кгс/мм2
___=((l1-l0)/l0)*100%=(120мм-100мм)/100мм*100%=20%
___=((___/___)/___)*100%=((1000мм2-70мм2)/1000мм2)*100%=93%
Ответ: Предел прочности при растяжении 5кгс/мм2 или 50МН/м2
Относительное удлинение 20%
Относительное сужение 93%
Задача №2. Применение металлических твердых сплавов групп ВК и ТК, их состав и свойства
Вольфрамокобальтовые сплавы (ВК)
Вольфрамокобальтовые сплавы (группа ВК) состоят из карбида вольфрама(WC) и кобальта. Сплавы этой группы различаются содержанием в них кобальта, размерами зерен карбида вольфрама и технологией изготовления. Для оснащения режущего инструмента применяют сплавы с содержанием кобальта 3-10%.
В табл. 2 приведены состав и характеристики основных физико-механических свойств твердых сплавов, в соответствии с ГОСТ 3882-74.
Табл. 2
Состав и характеристики основных физико-механических свойств сплавов, на основе WC-Co (группа ВК)
Сплав Состав, %
изг, Мпа, не менее
× 10-3, кг/м3
HRA, не менее WC TaC Co ВК3 97 - 3 1176 15,0-15,3 89,5 ВК3-М 97 - 3 1176 15,0-15,3 91,0 ВК4 96 - 4 1519 14,9-15,2 89,5 ВК6 94 - 6 1519 14,6-15,0 88,5 ВК6-М 94 - 6 1421 14,8-15,1 90,0 ВК6-ОМ 92 2 6 1274 14,7-15,0 90,5 ВК8 92 - 8 1666 14,4-14,8 87,5 ВК10 90 - 10 1764 14,2-14,6 87,0 ВК10-М 90 - 10 1617 14,3-14,6 88,0 ВК10-ОМ 88 2 10 1470 14,3-14,6 88,5
В условном обозначении сплава цифра показывает процентное содержание кобальтовой связки. Например обозначение ВК6 показывает, что в нем 6% кобальта и 94% карбидов вольфрама.
При увеличении в сплавах содержания кобальта в диапазоне от 3 до 10% предел прочности, ударная вязкость и пластическая деформация возрастают, в то время как твердость и модуль упругости уменьшаются. С ростом содержания кобальта повышаются теплопроводность сплавов и их коэффициент термического расширения.
Из всех существующих твердых сплавов, сплавы группы ВК при одинаковом содержании кобальта обладают более высокими ударной вязкостью и пределом прочности при изгибе, а также лучшей тепло- и электропроводностью. Однако стойкость этих сплавов к окислению и коррозии значительно ниже, кроме того, они обладают большой склонностью к схватыванию со стружкой при обработке резанием. При одинаковом содержании кобальта физико-механические и режущие свойства сплавов в значительной мере определяются средним размером зерен карбида вольфрама (WC). Разработанные технологические приемы позволяют получать твердые сплавы, в которых средний размер зерен карбидной составляющей может изменяться от долей микрометра до 10-15 мкм.
Сплавы с размерами карбидов от 3 до 5 мкм относятся к крупнозернистым и обозначаются буквой В (ВК6-В), с размерами карбидов от 0,5 до 1,5 мкм буквой М (мелкозернистым ВК6-М), а с размерами, когда 70% зерен менее 1,0 мкм – ОМ (особо мелкозернистым ВК6-ОМ). Сплавы с меньшим размером карбидной фазы более износостойкие и теплостойкие, а также позволяют затачивать более острую режущую кромку (допускают получение радиуса округления режущей кромки до 1,0-2,0 мкм).
Физико-механические свойства сплавов определяют их режущую способность в различных условиях эксплуатации.
С ростом содержания кобальта в сплаве его стойкость при резании снижается, а эксплуатационная прочность растет.
Эти закономерности и положены в основу практических рекомендаций по рациональному применению конкретных марок сплавов. ............