MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Определенный интеграл

Название:Определенный интеграл
Просмотров:167
Раздел:Математика
Ссылка:Скачать(201 KB)
Описание: Определенный интеграл Содержание Лекция 1. Определенный интеграл 1. Понятие определенного интеграла 2. Геометрический смысл определенного интеграла 3. Основные свойства определенного интеграла 4. Форм

Часть полного текста документа:


Определенный интеграл



Содержание

Лекция 1. Определенный интеграл

1. Понятие определенного интеграла

2. Геометрический смысл определенного интеграла

3. Основные свойства определенного интеграла

4. Формула Ньютона–Лейбница

5. Замена переменной в определенном интеграле

6. Интегрирование по частям

Лекция 2. Применение определенных интегралов. несобственные интегралы

1. Площадь криволинейной трапеции

2. Объем тела вращения

3. Длина дуги плоской кривой

4. Несобственные интегралы с бесконечными пределами интегрирования

5. Несобственные интегралы от неограниченных функций

Литература


Лекция 1. Определенный интеграл

 

1.  Понятие определенного интеграла

Пусть функция  определена на отрезке , . Выполним следующие операции:

1)  разобьем отрезок  точками  на n частичных отрезков ;

2)  в каждом из частичных отрезков ,  выберем произвольную точку  и вычислим значение функции в этой точке: ;

3)  найдем произведения , где  – длина частичного отрезка , ;

4)  составим сумму

, (1)

которая называется интегральной суммой функции y = f(x) на отрезке [а, b]. С геометрической точки зрения интегральная сумма  представляет собой сумму площадей прямоугольников, основаниями которых являются частичные отрезки , а высоты равны  соответственно (рис. 1). Обозначим через  длину наибольшего частичного отрезка ;

5)  найдем предел интегральной суммы, когда .


Рис. 1

 

Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка  на частичные отрезки, ни от выбора точек  в них, то этот предел называется определенным интегралом от функции  на отрезке  и обозначается .

Таким образом, .

В этом случае функция  называется интегрируемой на . Числа а и b называются соответственно нижним и верхним пределами интегрирования,  – подынтегральной функцией,  – подынтегральным выражением,  – переменной интегрирования; отрезок  называется промежутком интегрирования.

Теорема 1. Если функция  непрерывна на отрезке , то она интегрируема на этом отрезке.

2.  Геометрический смысл определенного интеграла

Пусть на отрезке  задана непрерывная неотрицательная функция . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f(x), снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).

Рис. 2

Определенный интеграл  от неотрицательной функции  с геометрической точки зрения численно равен площади криволинейной трапеции, ограниченной сверху графиком функции , слева и справа – отрезками прямых  и , снизу – отрезком  оси Ох.

3. Основные свойства определенного интеграла

 

1.  Значение определенного интеграла не зависит от обозначения переменной интегрирования: .

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3.  Если , то, по определению, полагаем

4.  Постоянный множитель можно выносить за знак определенного интеграла:

5.  Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

.

6.  Если функция  интегрируема на  и , то

.

7.  (теорема о среднем). Если функция  непрерывна на отрезке , то на этом отрезке существует точка , такая, что .

4. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Интеграция информационных технологий в системе государственного управления
Просмотров:52
Описание: Интеграция информационных технологий в системе государственного управления Введение в информационные технологии государственного управления Развитие информатизации стало ведущей мировой тенденцией в р

Название:Особенности интеграции в странах ЮВА в конце ХХ - начале XXI вв
Просмотров:133
Описание: МИНИСТЕРСТВО ПО ОБРАЗОВАНИЮ И НАУКЕ Государственное образовательное учреждение высшего профессионального образования «Российский государственный гуманитарный университет» ИНСТИТУТ ЭКОНОМИКИ, УПРАВЛЕН

Название:Общее понятие определённого интеграла, его геометрический и механический смысл
Просмотров:134
Описание: Кафедра: Высшая математика Реферат по дисциплине Высшая математика Тема: «Общее понятие определённого интеграла, его геометрический и механический смысл. Необходимое условие ин

Название:Несобственные интегралы
Просмотров:137
Описание: Дисциплина: «Высшая математика» Тема: «Несобственные интегралы» 1. Несобственные интегралы с бесконечными пределами При введении понятия определенного интеграла, а такж

Название:Технология изготовления плат толстопленочных гибридных интегральных схем
Просмотров:99
Описание: ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РФ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ЭЛЕКТРОНИКИ И ПРИБОРОСТРОЕНИЯ Кафедра: Проектирование и технология электронных и вычислительных систе

 
     

Вечно с вами © MaterStudiorum.ru