Министерство образования и науки РФ
Дальневосточный Государственный Технический Университет
(ДВПИ им. Куйбышева)
Институт Радиоэлектроники Информатики и Электротехники
ЭЛЕКТРОНИКА
"ПРИМЕНЕНИЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ"
Владивосток 2010 г.
Цель работы: Ознакомиться с применением ОУ для сложения двух постоянных, двух переменных, постоянного и переменного напряжений, дифференцирования и интегрирования входных сигналов.
Для исследования был использован ОУ LM741.
1. Суммирование постоянных напряжений моделировалось на схеме рис.1.
А. При UВХ1 = 5В и UВХ2 = 3В измерены: I1 =1мА; I2 =0,6мА; I3 =1,6мА; I4 =1,6мА; UВЫХ =-8В.
В. По значениям номиналов схемы рассчитаны:
I1 = U1/ R1 = 1мА; I2 = U2/ R2 =0,6мА;
Iос = UВЫХ/ R3 =1,6мА; Iос = I1+ I2 = 1,6мА;
U*ВЫХ = - (UВХ1∙ R3/ R1 + UВХ2∙ R3/ R2) = - 8В.
Измеренное значение UВЫХ соответствует расчетному значению U*ВЫХ.
2. Суммирование постоянного и переменного напряжений моделировалось на схеме рис.2., осциллограммы напряжений приведены на
рис.6.3
А. При UВХ≈ = 1В; UВЫХ≈ = 1В (фаза сдвинута на 1800); UВЫХ= = - 1В; расчетные значения этих величин:
U*ВЫХ≈ = 1В; U*ВЫХ= =-1В.
В. При UВХ≈ = 1В и R2=2,5 кОм измеренное значение UВЫХ≈ = 1В (фаза сдвинута на 1800), а постоянная составляющая UВЫХ= = 2В (рис.4).
Расчетные значения этих величин:
U*ВЫХ≈ = UВХ1∙ R3/ R1 = 1В; U*ВЫХ= = - UВХ2∙ R3/ R2 = - 2В;
3. Суммирование переменных напряжений исследовалось по схеме рис.5.
При UВХ≈ = 1В; UВЫХ≈ = 4В (фаза сдвинута на 1800); UВЫХ= = - 4В;
расчетные значения этих величин:
U*ВЫХ≈ = UВХ∙ R3/ R1 + R3/ R1 = 4В, что соответствует результатам измерений.
4. Переходной процесс в интеграторе исследовался по схеме рис.7 На вход схемы подавались импульсы прямоугольной формы частотой 1 кГц.
Скорость изменения выходного напряжения (по осциллограмме рис.8) VU ВЫХ = 10В/мс.
5. Влияние амплитуды входного сигнала на переходный процесс в интеграторе показан на рис.9.
VU ВЫХ = 20В/мс, что в два раза больше, чем в предыдущем эксперименте, то есть скорость изменения выходного напряжения интегратора пропорциональна амплитуде входного сигнала.
6. Влияние параметров схемы на переходный процесс в схеме интегратора
А. При R1 = 5 кОм скорость изменения выходного сигнала увеличивается:
VU ВЫХ = 20В/мс, что в 2 раза больше, чем в эксперименте по п.4 и равно значению в предыдущем эксперименте.
В. При С1 = 0,02 мФ скорость изменения выходного сигнала (рис.11) уменьшается: VU ВЫХ = 5В/мс, что в 2 раза меньше, чем в эксперименте по п.4.
Результаты измерений по п.4 - п.6 сведены в таблицу 1.
Таблица 1
Результаты экспериментов со схемой интегратора
№ пункта эксперимента
UВХ (В)
R1 (кОм)
C1 (мкФ)
VU ВЫХ (В/мс)
UВЫХ MAX (В)
4 1 10 0,01 10 2,5 5 2 10 0,01 20 5 6 А 1 5 0,01 20 5 6 В 1 10 0,02 5 1,25
7. Переходный процесс в схеме дифференциатора на ОУ исследовался по схеме рис.12, полученные осциллограммы представлены на рис.13.
А. Скорость изменения входного напряжения (по осциллограмме рис.13) VU ВХ = 4В/мс.
В. UВЫХ = - R2∙C1∙ ∆ UВХ / ∆t = - R2∙C1∙VU ВХ = - 1В, что соответствует экспериментальным данным, показанным на рис.13.
8. Для исследования влияния частоты входного напряжения, ее значение увеличено вдвое - 2 кГц (рис.14), следовательно, и скорость изменения входного напряжения (при той же амплитуде сигнала) увеличилась вдвое.
А. ............