MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> "Инкарнация" кватернионов

Название:"Инкарнация" кватернионов
Просмотров:276
Раздел:Математика
Ссылка:Скачать(54 KB)
Описание: «Инкарнация» кватернионов   Вводные замечания Кватернион, долгие годы считавшийся бесперспективным с подачи ортодоксальных математиков [1], в настоящее время начинает свое триумфальное шествие по науке

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

«Инкарнация» кватернионов

 

Вводные замечания

Кватернион, долгие годы считавшийся бесперспективным с подачи ортодоксальных математиков [1], в настоящее время начинает свое триумфальное шествие по науке (физика, химия кристаллов, информатика) и информационно-интерактивным технологиям.

Своим открытием и названием сам кватернион обязан ирландскому математику У.Р. Гамильтону (1805–1865) [2].

Уильям Роуан Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 19 лет опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, а в 23 года получил звание королевского астронома Ирландии. К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механике. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

В числе других математических задач он 10 лет безуспешно пытался найти описание поворотов трехмерного пространства на основе алгебры трехмерных чисел, пока не увидел, что их описание соответствует другой алгебре не с двумя мнимыми числами, а с тремя. Общепризнанно, что от типа алгебры, которой подчинена та или иная природная система, зависят ее геометрия, физические законы сохранения.

В одном из писем к своему сыну У.Р. Гамильтон писал: «Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k, содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября».

Стоит упомянуть, что оригинальное описание движения твердого тела с помощью кватерниона дал в 1873 году У. Клиффорд (1845–1879), а А.П. Котельникову (1865–1944) в 1895 году удалось истолковать все формулы теории кватернионов, как «неразвернутые» формулы теории обобщенных, т.н. дуальных кватернионов [3–6]. Применительно к кинематике этот подход устанавливает соотношение между движениями тела с одной неподвижной точкой и движениями произвольного вида [7].

Постановка проблемы

В различных разделах математики возникает потребность рассматривать векторные пространства (над данным полем k), в которых кроме действий сложения и умножения на скаляры определено еще действие умножения, сопоставляющее каждой упорядоченной паре векторов третий вектор того же пространства – их произведение. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Вычисление характеристических многочленов, собственных значений и собственных векторов
Просмотров:247
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ИНФОРМАТИКИ Курсовая работа по дисциплине «Численные методы» на тему: «Вычисление характери

Название:Коллинеарность и компланарность векторов. Канонические уравнения прямой
Просмотров:153
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Кафедра: Функциональный анализ

Название:"Инкарнация" кватернионов
Просмотров:276
Описание: «Инкарнация» кватернионов   Вводные замечания Кватернион, долгие годы считавшийся бесперспективным с подачи ортодоксальных математиков [1], в настоящее время начинает свое триумфальное шествие по науке

Название:Использование материального стимулирования в задании векторов поляризации корпоративной культуры
Просмотров:132
Описание:Поляризация личностных позиций сотрудников в отношении к «справедливости». Значение векторов поляризации корпоративной структуры в мотивации. Формирование проектных групп и выделение критериев личностной оценки.

Название:Оценки волновых векторов, задача согласования и оптимизация систем дипольных решеток
Просмотров:124
Описание:Оценка максимального правдоподобия. Оптимизация систем дипольных решеток.

 
     

Вечно с вами © MaterStudiorum.ru