MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Аффинные преобразования

Название:Аффинные преобразования
Просмотров:252
Раздел:Математика
Ссылка:Скачать(155 KB)
Описание: Глава I.Понятие о геометрическом преобразовании 1.1 Что такое геометрическое преобразование? Осевая симметрия, центральная симметрия, поворот, параллельный перенос, гомотетия имеют то общее, что все они

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Глава I.Понятие о геометрическом преобразовании

1.1 Что такое геометрическое преобразование?

Осевая симметрия, центральная симметрия, поворот, параллельный перенос, гомотетия имеют то общее, что все они „преобразуют" каждую фигуру F в некоторую новую фигуру F1. Поэтому их называют геометрическими преобразованиями.

 Вообще, геометрическим преобразованием называют всякое правило, позволяющее для каждой точки А на плоскости указать новую точку A', в которую переводится точка А рассматриваемым преобразованием. Если на плоскости задана какая-либо фигура F, то множество всех точек, в которые переходят тонки фигуры F при рассматриваемом преобразовании, представляет собой новую фигуру F., В этом случае говорят, что F' получается из F при помощи рассматриваемого преобразования.

Пример. Симметрия относительно прямой l является геометрическим преобразованием. Правило, позволяющее по точке A найти соответствующую ей точку А', в этом случае заключается в следующем: из точки А опускается перпендикуляр АР на прямую l и на его продолжении за точку Р откладывается отрезок РА'=АР.

Сложение геометрических преобразований

Предположим, что мы рассматриваем два геометрических преобразования, одно из которых называем „первым", а другое - „вторым". Возьмем на плоскости произвольную точку А и обозначим через А' ту точку, в которую переходит А при первом преобразовании. В свою очередь точка А' переводится вторым преобразованием в некоторую новую точку А". Иначе говоря, точка А" получается из точки А при помощи последовательного применения двух преобразований - сначала первого, а затем второго.

Результат последовательного выполнения взятых двух преобразований также представляет собой геометрическое преобразование: оно переводит точку А в точку А". Это „результирующее" преобразование называется суммой первого и второго рассмотренных преобразований.

Пусть на плоскости задана какая-либо фигура F. Первое преобразование переводит ее в некоторую фигуру F' . Вторым преобразованием эта фигура F' переводится в некоторую новую фигуру F''. Сумма же первого и второго преобразований сразу переводит фигуру F в фигуру F".

Пример. Пусть первое преобразование представляет собой симметрию относительно точки О1 а второе преобразование - симметрию относительно другой точки О2. Найдем сумму этих двух преобразований.

Пусть А — произвольная точка плоскости. Предположим сначала, что точка A не лежит на прямой O1O2. Обозначим через А' точку, симметричную точке А относительно О1, а через A" — точку, симметричную точке A' относительно О2 . Так как О1O2 — средняя линия треугольника АА'А'' то отрезок АА" параллелен отрезку О1O2 и имеет вдвое большую длину. Направление от точки А к точке А" совпадает с направлением от точки

О1 к точке О2. Обозначим теперь через МN такой вектор, что отрезки MN и O1 O2 параллельны, отрезок МN в два раза длиннее отрезка O1О2 и лучи МN и O1O2 имеют одно и то же направление. Тогда АА" = МN, т. е. точка А" получается из точки А параллельным переносом на вектор МN.

То же справедливо и для точки, лежащей на прямой O1О2.

Окончательно мы получаем: сумма симметрии относительно точки O1 и симметрии относительно точки O2 представляет собой параллельный, перенос.

1.2 Движения

Осевая симметрия, поворот (в частности, центральная симметрия) и параллельный перенос имеют то общее, что каждое из этих преобразований переводит любую фигуру F на плоскости в равную ей фигуру F' . ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Преобразование энергии в электрических машинах постоянного тока
Просмотров:426
Описание: КОНТРОЛЬНАЯ РАБОТА «ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКИХ МАШИНАХ ПОСТОЯННОГО ТОКА» Задача 1. По следующим параметрам обмотки якоря машины постоянного тока: число пар полюсов р, число эффективных провод

Название:Преобразование сигналов и помех радиотехническими цепями
Просмотров:306
Описание: Курсовая работа   "Преобразование сигналов и помех радиотехническими цепями" Таганрог 2011 год 1. Отклик на выходе резонансного усилителя и де

Название:Преобразование параллельного двоичного кода в код Хэмминга
Просмотров:221
Описание: Министерство образования Республики Беларусь Белорусский государственный университет информатики и радиоэлектроники Кафедра метрологии и стандартизации К защите допускаю " __" 2009г. преподават

Название:Решетка из рупорных антенн с электрическим качанием луча в горизонтальной плоскости
Просмотров:294
Описание: Министерство общего и профессионального образования Российской Федерации РГРТА Кафедра Радиоуправления и Связи Курсовая работа НА ТЕМУ: «РЕШЕТКА ИЗ РУПОРНЫХ АНТЕНН С ЭЛЕКТРИЧЕСКИМ КА

Название:Источник бесперебойного питания с двойным преобразованием
Просмотров:195
Описание: Содержание Введение 1. Классификация ИБП 2. ИБП с двойным преобразованием энергии: схемотехника и технические характеристики 2.1 Назначение и описание узлов силовой цепи ИБП 2.2 Системные показатели ИБП

 
     

Вечно с вами © MaterStudiorum.ru