MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Алгебраическая проблема собственных значений

Название:Алгебраическая проблема собственных значений
Просмотров:93
Раздел:Математика
Ссылка:Скачать(34 KB)
Описание:Некоторые основные сведения, необходимые при решении задач на собственные значения. Итерационные методы решения. Определение собственных значений методами преобразований подобия.

Часть полного текста документа:

Алгебраическая проблема собственных значений 1. Введение
    Целый ряд инженерных задач сводится к рассмотрению систем уравнений, имеющих единственное решение лишь в том случае, если известно значение некоторого входящего в них параметра. Этот особый параметр называется характеристическим, или собственным, значением системы. С задачами на собственные значения инженер сталкивается в различных ситуациях. Так, для тензоров напряжений собственные значения определяют главные нормальные напряжения, а собственными векторами задаются направления, связанные с этими значениями. При динамическом анализе механических систем собственные значения соответствуют собственным частотам колебаний, а собственные векторы характеризуют моды этих колебаний. При расчете конструкций собственные значения позволяют определять критические нагрузки, превышение которых приводит к потере устойчивости.
    Выбор наиболее эффективного метода определения собственных значений или собственных векторов для данной инженерной задачи зависит от ряда факторов, таких, как тип уравнений, число искомых собственных значений и их характер. Алгоритмы решения задач на собственные значения делятся на две группы. Итерационные методы очень удобны и хорошо приспособлены для определения наименьшего и наибольшего собственных значений. Методы преобразований подобия несколько сложней, зато позволяют определить все собственные значения и собственные векторы.
    В данной работе будут рассмотрены наиболее распространенные методы решения задач на собственные значения. Однако сначала приведем некоторые основные сведения из теории матричного и векторного исчислений, на которых базируются методы определения собственных значений. 2. Некоторые основные сведения, необходимые при решении задач на собственные значения
    В общем виде задача на собственные значения формулируется следующим образом:
    AX = ?X,
    где A - матрица размерности n х n. Требуется найти n скалярных значений ? и собственные векторы X, соответствующие каждому из собственных значений.
    Основные определения матричного исчисления
    1. Матрица A называется симметричной, если
    аij = аij, где i, j = 1, 2, . . ., n.
    Отсюда следует симметрия относительно диагонали
    аkk, где k == 1, 2, . . ., n.
    Матрица
     1 4 5 4 3 7 5 7 2
    является примером симметричной.
    2. Матрица A называется трехдиагональной, если все ее элементы, кроме элементов главной и примыкающих к ней диагоналей, равны нулю. В общем случае трехдиагональная матрица имеет вид
     * * 0 * * * * * * . . . . . . * * * 0 * * * * *
    Важность трехдиагональной формы обусловлена тем, что некоторые методы преобразований подобия позволяют привести произвольную матрицу к этому частному виду.
    3. Матрица A называется ортогональной, если
    АТА = Е,
    где Ат-транспонированная матрица A, а Е-единичная матрица. Очевидно, матрица, обратная ортогональной, эквивалентна транспонированной.
    4. Матрицы А и В называются подобными, если существует такая несингулярная матрица Р, что справедливо соотношение
    В = Р-1АР.
    Основные свойства собственных значений.
    1. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Несобственные интегралы
Просмотров:136
Описание: Дисциплина: «Высшая математика» Тема: «Несобственные интегралы» 1. Несобственные интегралы с бесконечными пределами При введении понятия определенного интеграла, а такж

Название:Определитель матрицы
Просмотров:131
Описание: Дисциплина: Высшая математика Тема: Определитель матрицы 1. Понятие определителя Матрица - это прямоугольная таблица, составленная из чисел. Особое место среди матриц занимают

Название:Определитель матрицы
Просмотров:133
Описание: Оглавление   Задача 1 Задача 2 Задача 3 Задача 4 Задача 5 Задача 1   Вычислить определитель 4-го порядка. Решение: Определитель 4-го порядка находится по формуле:  , где aij – эл

Название:Оформление гражданских дел на стадии принятия и назначения к судебному рассмотрению
Просмотров:54
Описание: Содержание Введение 1.  Порядок возбуждения гражданского дела в суде 1.1 Отказ в принятии заявления 1.2 Возвращение искового заявления 1.3 Оставление искового заявления без движения 2. Подготовка дела

Название:Проектирование привода общего назначения
Просмотров:80
Описание: Министерство образования Российской Федерации Магнитогорский Государственный Технический Университет Имени Г.И. Носова КУРСОВОЙ ПРОЕКТ РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА) по курсу «Прикл

 
     

Вечно с вами © MaterStudiorum.ru