MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Аналитическая теория чисел. L-функция Дирихле

Название:Аналитическая теория чисел. L-функция Дирихле
Просмотров:274
Раздел:Математика
Ссылка:Скачать(225 KB)
Описание: Содержание Введение §1. Характеры Дирихле и L-функции Дирихле §2. Функция θ(x ,χ), её функциональное уравнение §3. Аналитическое продолжение L-функции Дирихле на комплексную плоскость §4. Функциональн

Часть полного текста документа:

Содержание

Введение

§1. Характеры Дирихле и L-функции Дирихле

§2. Функция θ(x ,χ), её функциональное уравнение

§3. Аналитическое продолжение L-функции Дирихле на комплексную плоскость

§4. Функциональное уравнение для L-функции Дирихле. Тривиальные нули L-функции Дирихле

§5. Нетривиальные нули L-функции Дирихле

5.1 Теорема Вейерштрасса о разложении в произведение целых функций

5.2 О бесконечности целых нетривиальных нулей L-функции Дирихле 12

§6. Обобщенная гипотеза Римана

Библиографический список

 


 

Введение

 

Теория L-функций Дирихле развилась в одно из важнейших вспомогательных средств аналитической теории чисел. Большую роль в приложениях играет исследование нулей L-функций Дирихле.

В аналитической теории чисел L-функция Дирихле играет такую же роль, как и ζ-функция при решении задач теории чисел, а именно задач, связанных с распределением простых чисел в арифметических прогрессиях и в задачах, связанных с оценками арифметических сумм.

Предметом исследования данной курсовой работы является распределение значений L-функций Дирихле, результаты Гурвица о выводе функционального уравнения для L-функции Дирихле и как следствие, показать, что L-функции Дирихле в критической полосе имеют бесконечное число нулей. Эти функции ввел в 1837 г. Густав Дирихле при исследовании вопроса о распределении простых чисел в арифметических прогрессиях. Основные результаты были получены в 1922 году А. Гурвицем.

В данной курсовой работе изложение материала отражает основные свойства L-функций Дирихле и соответствует результатам, полеченным Гурвицем касающимся L-функций Дирихле.

В заключении данной работы приводится гипотеза о распределении нулей дзета-функции, сформулированная Бернхардом Риманом в 1859 году. Гипотеза Римана входит в список семи «проблем тысячелетия».


 

§1. Характеры Дирихле и L-функции Дирихле

Прежде всего определим характеры по модулю k, равному степени простого числа, и докажем их основные свойства. Характеры по произвольному модулю к определим затем через характеры по модулю, равному степени простого числа; при этом основные свойства последних сохранятся.

Пусть k=ра, где р> 2 — простое число, α≥1. Как известно, по модулю k существуют первообразные корни, и пусть g — наименьший из них. Через ind n будем обозначать индекс числа п, (п, к) = 1, по модулю k при основании g, т. е. число γ = γ(п) = ind n такое, что

(mod k).

Определение 1.1. Характером по модулю k= ра, р>2 — простое, α≥ 1, называется конечнозначная мультипликативная периодическая функция χ(n), областью определения которой является множество целых чисел п, и такая, что

где т — целое число.

Из определения характера видно, что функция зависит от параметра т, является периодической по т с периодом φ(k), т. е. существует, вообще говоря, φ(k) характеров по модулю k, которые получаются, если брать т равным 0, 1, ..., φ(k) - 1.

Пусть теперь k = 2α, α≥ 3. Как известно, для любого нечетного числа п существует система индексов γ0 = γ0(п) и γ1 = γ1(n) по модулю k, т. е. такие числа γ0 и γ1 , что

Таким образом, числа γ0 и γ1 определяются с точностью до слагаемых, кратных соответственно 2 и 2α-2.

Определение 1.2. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Мифология. Функции мифа. Мифологические школы
Просмотров:749
Описание: Мифология как мир первообразов и материя духовности Но для создателей мифологии она была не просто достоверной или истинной. У них и вопроса не могло возникнуть об истинности. Для первобытного человека мифология

Название:Общественные функции СМИ. По кн. Введение в журналистику
Просмотров:837
Описание: Цвик В. Л. Для чего существует журналистика? Зачем она нужна отдельному индивиду и обществу в целом? Иными словами, каковы социальные функции СМИ? Сразу условимся, что термин "функции” мы будем понимать как разн

Название:Понятие, задачи, система и основные функции органов внутренних дел
Просмотров:723
Описание: Органы внутренних дел представляют собой сложную, разветвленную систему, в которую входят в качестве ее функциональных элементов (подсистем) милиция, пожарная охрана, внутренние войска, следственный аппарат и др. О

Название:Функции культурных норм
Просмотров:646
Описание: Культурные нормы выполняют в обществе очень важные функции. Они являются обязанностями и указывают меру необходимости в человеческих поступках; служат ожиданиями в отношении будущего поступка; контролируют откл

Название:Психологическая теория деятельности: действия и цели; операции; психофизиологические функции
Просмотров:464
Описание: Гиппенрейтер Ю.Б. Психологическая теория деятельности была создана в советской психологии и развивается уже на протяжении более 60 лет. Она обязана работам советских психологов: Л.С. Выготского, С.Л. Рубинштейна, А

 
     

Вечно с вами © MaterStudiorum.ru