Федеральное агентство по образованию
Московский государственный открытый университет
Чебоксарский политехнический институт
Курсовой проект
по дисциплине: "Оптимальные системы автоматического управления"
на тему: "Анализ методов определения минимального, максимального значения функции при наличии ограничений"
Выполнил:
студент 5 курса,
ФУИТС, гр. И-52/06,
Терсенидис М. Г.
Проверила:
Изосимова Т. А.
Чебоксары – 2010
Задание
Дана несепарабельная квадратичная функция двух переменных:
,
где a = 1, b = 0.5, c = 1, d = 0, e = 1, f = 0.333.
Дана начальная точка поиска A0(x0, y0), где x0 = 0.5, y0 = 2.5.
1. Найти безусловный экстремум функции f(x,y):
· методом наискорейшего спуска;
· методом сопряженных направлений.
Точность вычислений:
2. Найти условный экстремум этой же функции f(x,y) методом симплексных процедур при наличии ограничений:
1.5x + у – 3.75 ≥ 0;
0.5х + у - 3.75 ≤ 0;
x - у - 2 ≤ 0.
3. Выполнить синтез оптимальной по быстродействию системы с помощью принципа максимума Понтрягина (критерий по быстродействию), передаточная функция объекта:
, где k = 4, T1 = 10, T2 = 5.
· разработать модель для данного типа ОСАУ;
· провести исследование ОСАУ с применением программного продукта "20-sim Pro 2.3";
· снять переходные и импульсные характеристики.
Содержание
Введение
1. Анализ методов определения минимального и максимального значения функции многих переменных без ограничений
2. Нахождение экстремума функции без ограничения
3. Анализ методов определения минимального, максимального значения функции при наличии ограничений
4. Нахождение экстремума функции при наличии ограничений
5. Синтез оптимальной по быстродействию системы с помощью принципа максимума Понтрягина
Заключение
Список использованной литературы
Приложение
функция переменная экстремум максимум
Введение
При решении конкретной задачи оптимизации исследователь прежде всего должен выбрать математический метод, который приводил бы к конечным результатам с наименьшими затратами на вычисления или же давал возможность получить наибольший объем информации об искомом решении. Выбор того или иного метода в значительной степени определяется постановкой оптимальной задачи, а также используемой математической моделью объекта оптимизации.
В настоящее время для решения оптимальных задач применяют в основном следующие методы:
· методы исследования функций классического анализа;
· методы, основанные на использовании неопределенных множителей Лагранжа;
· вариационное исчисление;
· динамическое программирование;
· принцип максимума;
· линейное программирование;
· нелинейное программирование.
Как правило, нельзя рекомендовать какой-либо один метод, который можно использовать для решения всех без исключения задач, возникающих на практике. Одни методы в этом отношении являются более общими, другие - менее общими. Наконец, целую группу методов (методы исследования функций классического анализа, метод множителей Лагранжа, методы нелинейного программирования) на определенных этапах решения оптимальной задачи можно применять в сочетании с другими методами, например динамическим программированием или принципом максимума.
Отметим также, что некоторые методы специально разработаны или наилучшим образом подходят для решения оптимальных задач с математическими моделями определенного вида. ............