Зміст
Вступ
Розділ 1. Теорема Піфагора на площині
1.1 Різні доведення теореми Піфагора
1.2 Теорема Піфагора та цілочислові прямокутні трикутники
1.3 Історичні відомості
1.4 Розв’язування задач
Задача 1
Задача 2
Задача 3
Задача 4
Задача 5
Розділ 2. Теорема Піфагора у просторі або стереометричний аналог теореми Піфагора
2.1 Теорема(стереометричний аналог теореми Піфагора)
Доведення 1
Доведення 2
Доведення 3
Доведення 4
Доведення 5
Доведення 6
Доведення 7
Доведення 8
Доведення 9
Висновок
Література
Вступ
Математик – це той , хто вміє знаходити аналогії між твердженнями; кращий математик той, хто встановлює аналогії доведень; більш сильний математик той, хто помічає аналогії теорій; але можна уявити собі й такого, хто між аналогіями бачить аналогії. (Стефан Банах)
Аналогія є таким умовидом, при якому, встановивши схожість будови об’єктів у деяких властивостях, припускають , що вони, можливо, схожі і в інших властивостях.
Відомо, що в процесі розвитку науки висновки за аналогією відіграють велику роль. Аналогія, як важлива форма мислення завжди привертала до себе увагу і була предметом дослідження видатних вчених, мислителів. Чудові зразки міркувань за аналогією дали такі відомі природодослідники, як Леонардо да Вінчі, Й. Кеплер, Г. Галілей, М.В. Ломоносов, Ч. Дарвін, Д.І. Менделєєв, К. Максвелл, А. Ейнштейн та інші. За допомогою аналогії вони обґрунтували ряд найважливіших наукових відкриттів.
Серед цінностей інтелекту «вищого порядку», що являють собою найважливішу частину математичної освіти, одне з пріоритетних місць, ймовірно, займає вміння знаходити і застосовувати аналогії. Про цей метод поетично і захоплено говорив Стефан Банах: «Математик – це той, хто вміє знаходити аналогії між твердженнями; кращий математик той, хто встановлює аналогії доведень; більш сильний математик той, хто помічає аналогії теорій; але можна уявити собі й такого, хто між аналогіями бачить аналогії. »
Але більш багатогранно аналогія виявляється у творчій діяльності людини. Велике значення має аналогія для творчого мислення.
Аналогія застосовується в учнівському пізнанні
П.М. Єрднієв вважає, що володіння ум овидом за аналогією «сприяє як творчості вченого – математика, так і успішному навчанню цієї науки або самостійному вивченню її».
Роль аналогії значно зростає в сучасних умовах навчання, коли перед школою стоїть завдання озброювати учнів не лише знаннями, а й методами самостійного здобуття знань.
Звернемо увагу на основні дидактичні функції аналогії. По-перше, аналогія сприяє більш глибокому осмисленню матеріалу, що вивчається. При цьому застосовується ті види аналогії, які конкретизують образи і уявлення. По-друге, аналогія при вивченні нового матеріалу допомагає підводити учнів до визначення нових для них понять, самостійних пошуків способу розв’язання задачі, ефективної організації повторення, узагальнення і систематизації матеріалу.
Вбачаючи в аналогії великі дидактичні можливості, вчені радять користуватись нею і вчителю, і учням. Проте слід пам’ятати, що висновки в умовиводах за аналогією не дає відповіді на питання про правильність припущення, ця правильність повинна перевірятись іншими засобами. ............