Введение В последнее время все больше и больше внедряются в нашу повседневную жизнь информационные технологии, пытаясь захватить в ней все: от важнейших государственных проектов до решения обычных бытовых проблем. Вместе с огромной пользой и, казалось бы, неограниченными возможностями новые технологии приносят и новые проблемы. Одной из них является проблема защиты информации от несанкционированного посягательства теми, кто доступа к этой информации иметь не должен. В связи с этим почти одновременно с развитием информационных и компьютерных технологий начали развиваться и технологии защиты информации, развитие которых с некоторой точки зрения гораздо более критично, чем развитие непосредственно информационных технологий. Ведь с совершенствованием систем защиты, совершенствуются и методы взлома, обхода этих защит, что требует постоянного пересмотра и увеличения надежности защиты информации.
На сегодняшний день большинство национальных организаций приняли стандарты цифровой подписи, а ряд западных регламентирующих институтов увязали эти стандарты с использованием эллиптических кривых.
Способов защиты информации существует очень много, но каждый из них всегда можно отнести к одному из двух видов: физическое сокрытие информации от противника и шифрование информации. Зашифрованную информацию можно свободно распространять по открытым каналам связи без боязни ее раскрытия и нелегального использования. Хотя, конечно же, такая защита не абсолютно надежна, и каждый из способов шифрования характеризуется своей стойкостью, т.е. способностью противостоять криптографическим атакам.
Целью данного диплома является реализация трех лабораторных работ, посвященных:
· нахождению обратного элемента с помощью расширенного алгоритма Евклида;
· алгоритму формированию конечного поля Галуа GF(p) и подсчету количества точек эллиптической кривой n=#Ep;
· алгоритму ассиметричного шифрования на базе эллиптических кривых ECES.
Для вычисления наибольшего общего делителя d и одновременно чисел u и v используется так называемый расширенный алгоритм Евклида. В обычном алгоритме Евклида пара чисел (a,b) в цикле заменяется на пару (b,r), где r - остаток от деления a на b, при этом наибольший общий делитель у обеих пар одинаковый. Начальные значения переменных a и b равны m и n соответственно. Алгоритм заканчивается, когда b становится равным нулю, при этом a будет содержать наибольший общий делитель.
Идея расширенного алгоритма Евклида заключается в том, что на любом шаге алгоритма хранятся коэффициенты, выражающие текущие числа a и b через исходные числа m и n. При замене пары (a,b) на пару (b,r) эти коэффициенты перевычисляются.
Конечное поле или поле Галуа — поле, состоящее из конечного числа элементов. Конечное поле обычно обозначается GF(р), где р — число элементов поля.
Эллиптические кривые являются одним из основных объектов изучения в современной теории чисел и криптографии. Например, они были использованы Эндрю Уайлзом (совместно Ричардом Тейлором) в доказательстве Великой теоремы Ферма. Эллиптическая криптография образует самостоятельный раздел криптографии, посвященный изучению криптосистем на базе эллиптических кривых. ............