Міністерство освіти і науки України
Сумський Державний Університет
Кафедра Інформатики
Курсова робота
на тему:
«Чисельні методи розв’язування крайових задач для звичайних диференціальних рівнянь»
«Метод скінченних різниць»
Суми 2006
Зміст
Вступ
Постановка задачі
Метод скінчених різниць
Дослідження точності
Збіжність різницевої схеми
Програмна реалізація(представлена на мові Delphi
Висновки
Література
Вступ
На сьогоднішній день існує багато чисельних методів розв’язування крайових задач для звичайних диференціальних рівнянь. Але всі вони поділяються на дві групи: наближені методи чисельного розв’язання і наближені аналітичні методи.
Наближені чисельні методи:
1.Розв'язання лінійної крайової задачі комбінуванням двох задач Коші:
Припустимо, що розв'язок задачі (11.4), (11.5) будемо шукати у вигляді
(11.6)
де - деяка константа, - функція, що задовольняє однорідне рівняння
(11.7)
а - функція, яка задовольняє неоднорідне рівняння
(11.8)
Через те, що рівняння (11.4) є лінійним, функція буде його розв'язком для будь-якого . Справді,
Якщо припустити, що розв’язок (11.6) задовольняє першу граничну умову (11.5) для будь-якого , то отримаємо рівняння
Ця гранична умова задовольняється, якщо покласти
(11.9)
(11.10)
Рівність (11.9) справедлива, коли прийняти, наприклад, що
, (11.11)
Щоб задовольнити рівність (11.10), можна покласти
, , якщо (11.12)
, , якщо (11.13)
Враховуємо, що одночасно і на нуль не перетворюються через умову (11.5).
Таким чином, для розв'язання крайової задачі (11.4), (11.5) необхідно знайти розв'язок задач
, , (11.14)
(11.15)
з початковими умовами (11.12) чи (11 13). Для цього можна використати будь-який чисельний метод розв'язання задачі Коші для рівнянь другого порядку. Наближений розв'язок цих рівнянь отримуємо на відрізку , у результаті чого стають відомими значення ,,,. Це дозволяє вибрати таку константу . щоб функція (11.6) задовольняла не тільки рівняння (11.12) і першу граничну умову, але і другу граничну умову (11.5). Маємо
,
звідки
,
якщо . (11.16)
Коли , то однорідна крайова задача
, ,
мас нетривіальний розв'язок , який є ознакою виродженості початкової задачі (11.4), (11.5).
2. Метод прицілювання:
Викладений вище метод редукції крайової задачі до задачі Коші має певні недоліки.
Він не дозволяє використовувати методи розв'язання задачі Коші зі змінним порядком і змінним кроком. ............