MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Чисельне розв’язання задач оптимального керування

Название:Чисельне розв’язання задач оптимального керування
Просмотров:75
Раздел:Информатика, программирование
Ссылка:Скачать(133 KB)
Описание: ЧИСЕЛЬНЕ РОЗВ’ЯЗАННЯ ЗАДАЧ оптимального керування 1 Дискретизація задачі із закріпленим лівим і вільним правим кінцем. Необхідні умови оптимальності Розглянемо неперер

Часть полного текста документа:

ЧИСЕЛЬНЕ РОЗВ’ЯЗАННЯ ЗАДАЧ оптимального керування
1 Дискретизація задачі із закріпленим лівим і вільним правим кінцем. Необхідні умови оптимальності

Розглянемо неперервну задачу оптимального керування

,(1)

,(2)

, , . (3)

Виконаємо дискретну апроксимацію даної задачі. Для цього розіб’ємо відрізок  точками ,  і будемо обчислювати значення цільового функціонала і закону руху тільки в точках розбиття: , , . Закон руху в цьому випадку можна записати у вигляді:

.

Тепер дискретна задача оптимального керування, що апроксимує неперервну задачу (1) – (3), матиме вигляд:

, ,       (4)

 , (5)

 (6)

, . (7)

Для пошуку оптимального розв’язку отриманої дискретної задачі може бути застосований метод множників Лагранжа. Функція Лагранжа має вигляд:

,

,(8)

де .

Обмеження на керування введемо далі, під час реалізації чисельного методу. Відзначимо, що перед першим доданком стоїть знак «–», оскільки  і якщо не додавати «–», то характер екстремуму початкової функції зміниться.

Якщо  – локально-оптимальний процес для задачі (4) – (7), то існують такі нерівні одночасно нулю множники Лагранжа , , , , що матимуть місце наступні умови:

1.  або

,

,

.        (10)

2.  або

,

. (11)

Із (9) одержимо ітераційні співвідношення для спряжених змінних , а з (10) – співвідношення для :

, (12)

 .                                         (13)

Перепишемо співвідношення (12) у вигляді:

.

Очевидно, що останнє співвідношення є аналогом спряженої системи для неперервних задач керування. Дійсно,

.

Якщо , то з останнього співвідношення одержимо


.

Зі співвідношення (13) випливає, що .

Сформулюємо критерій оптимальності для задачі (4) – (7). Вважатимемо, що функції ,  неперервно-диференційовані за змінними  і опуклі за . Тоді для локально-оптимального процесу  існують такі множники Лагранжа , , , , не всі рівні нулю одночасно, що матимуть місце необхідні умови екстремуму:

1) умови стаціонарності в точці :

;

2) . (14)

Розпишемо (14), використовуючи вираз для функції Лагранжа:

Перетворимо вираз під знаком мінімуму, переходячи до довільного :

Або

Якщо , то з останнього співвідношення одержимо

2 Ітераційний метод розв’язання дискретної задачі оптимального керування з двійним перерахуванням

Розглянемо ітераційний метод пошуку оптимального керування задачі (4) – (7). Суть методу полягає в тому, що на кожній ітерації обчислюються два вектори:  і . Перший із них містить -е наближення для керувань у моменти часу  для системи (14), при , а другий – -е наближення для фазових станів системи в ці ж моменти часу. Отже, на кожній ітерації ми одержуємо процес , що є -м наближенням до шуканого оптимального процесу.

Контроль у методі подвійного перерахування полягає в повторному перерахуванні результатів задачі і порівнянні отриманих даних для різних значень кроку розбиття. У випадку розбіжності виконується корекція і обчислення повторюються.

Розглянемо алгоритм методу.

1. Задаємо крок розбиття  та точність обчислень .

2. Задаємо початкове наближення – припустимий набір керувань на кожному кроці – початкову стратегію керування:

, , ,

де  – наближення керування в момент  на ітерації .

3. За визначеною в п. 2 стратегією керування  будуємо фазову траєкторію процесу

, ,

на початкової ітерації , використовуючи початкові умови і різницеві співвідношення, що апроксимують рівняння руху:

, .

4. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Технічне обслуговування рульового керування автомобілів КамАЗ
Просмотров:190
Описание: Тема: Технічне обслуговування рульового керування автомобілів КамАЗ Зміст 1. Загальні відомості 2. Будова рульового керування автомобілів камаз 2.1 Кутовий редуктор 2.2 Рульовий м

Название:Організація, планування і керування хімічнім підприємством
Просмотров:83
Описание: Міністерство освіти і науки України Дніпропетровський державний хіміко-технологічний університет Кафедра економіки промисловості та організації виробництваКурсова робота Тема: “Організація, плануван

Название:Розробка, дослідження системи керування на основі нейронної мережі
Просмотров:86
Описание: Міністерство освіти і науки України НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» Факультет XXX Кафедра «Обчислювальна техніка та програмування» Спеціальність 8.091502 «Системне

Название:Технічне обслуговування та ремонт рульового керування автомобіля ГАЗ-53А
Просмотров:74
Описание: ТО та ремонт рульового керування автомобіля ГАЗ-53А ЗМІСТ   1. ПРИЗНАЧЕННЯ, БУДОВА ТА РОБОТА РУЛЬОВОГО КЕРУВАННЯ АВТОМОБІЛЯ ГАЗ-53А 2. ОЗНАКИ НЕСПРАВНОСТЕЙ РУЛЬОВОГО КЕРУВ

Название:Техніка користування органами керування автомобіля
Просмотров:89
Описание: Реферат з дисципліни «Основи безпеки дорожнього руху» Тема: Техніка користування органами керування автомобіля Зміст   1. Основи керування 1.1 Робоче місце водія. 1.2. Основні орг

 
     

Вечно с вами © MaterStudiorum.ru