MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Численное решение системы линейных алгебраических уравнений методом Гаусса

Название:Численное решение системы линейных алгебраических уравнений методом Гаусса
Просмотров:71
Раздел:Информатика, программирование
Ссылка:Скачать(202 KB)
Описание: Содержание Введение 1. Постановка задачи 2. Математические и алгоритмические основы решения задачи 2.1 Описание метода 2.2 Алгоритм 3. Функциональные модели и блок-схемы решения задачи 4. Программная реал

Часть полного текста документа:

Содержание

Введение

1. Постановка задачи

2. Математические и алгоритмические основы решения задачи

2.1 Описание метода

2.2 Алгоритм

3. Функциональные модели и блок-схемы решения задачи

4. Программная реализация решения задачи

5. Пример выполнения программы

Заключение

Список использованных источников и литературы


Введение

Математические модели процессов часто или сразу строятся как линейные алгебраические системы или сводятся к ним. Необходимость решения СЛАУ возникает при вычислении определителя, обращения матриц, нахождении собственных чисел.

Методы численного решения системы Ax=b, где A - матрица n x n, det A ≠ 0, x - искомый вектор, b - заданный вектор, разделяются на два класса: прямые и итерационные. Прямые методы позволяют находить решение системы за конечное число арифметических операций. Если операции реализуются точно, то решение будет точным (прямые методы еще называют точными). На деле при вычислении на ЭВМ прямые методы не приводят к точному решению вследствие погрешностей округления.

Итерационные методы позволяют найти точное решение путем бесконечного повторения единообразных действий т.е. решение, которое реально можно получить, будет приближенным.


1. Постановка задачи

Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида

a11x1 + a12x2 + … + a1nxn = b1,a21x2 + a22x2 + … + a2nxn = b2,... ... ...

an1x1 + an2x2 + … + annxn = bn

с помощью метода исключения Гаусса.

Пример 1. Покажем, как методом Гаусса можно решить следующую систему:

Обнулим коэффициенты при x во второй и третьей строчках. Для этого домножим их на  и 1 соответственно и сложим с первой строкой:

Теперь обнулим коэффициент при y в третьей строке, домножив вторую строку на - 6 и сложив с третьей:

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке.

Имеем:

z = - 1 из третьего;

y = 3 из второго, подставив полученное z

x = 2 из первого, подставив полученные z и y.

Таким образом исходная система решена.

Пример 2. Покажем, как методом Гаусса можно решить следующую систему:

 

Составим расширенную матрицу системы.

.

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: x =1, y = 2, z = 3.


2. Математические и алгоритмические основы решения задачи 2.1 Описание метода

Метод Гаусса - классический метод решения системы линейных алгебраических уравнений (СЛАУ). Состоит в постепенном понижении порядка системы и исключении неизвестных.

Пусть исходная система выглядит следующим образом

,

. (1)

Тогда согласно свойству элементарных преобразований над строками эту систему можно привести к трапециальному виду:

,.

Переменные  называются главными переменными. Все остальные называются свободными.

Если , то рассматриваемая система несовместна.

Предположим, что .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом , i=1,…,r. (где i - номер строки):

где i=1,…,r, k=i+1, …, n.

Если свободным переменным системы (2) придавать все возможные значения и вычислить через них главные переменные, то мы получим все решения этой СЛАУ. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Понятие системы и системного подхода к познанию
Просмотров:155
Описание: Содержание 1. Понятия "системный подход" и "система" 2. Логические основы системного подхода Список используемой литературы Введение В различных областях науки и техники широко используе

Название:Использование финансов для решения социальных проблем
Просмотров:62
Описание: СОДЕРЖАНИЕ Введение 1. Расходы государства на социальные нужды 1.1 Сущность расходов государства на социальные нужды 1.2 Группы расходов на социальные нужды 2. Финансовые методы повышения жизненного уро

Название:Экономическое содержание системы расходов бюджета
Просмотров:71
Описание: Содержание Введение 1. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ФОРМИРОВАНИЯ РАСХОДОВ БЮДЖЕТА 1.1 Понятие и сущность бюджета 1.2 История возникновения бюджета 2 СОДЕРЖАНИЕ СИСТЕМЫ РАСХОДОВ БЮДЖЕТА 2.1 Классификация расход

Название:Принципы и сущность системы налогов и сборов в Российской Федерации
Просмотров:82
Описание: Содержание   Введение Сущность налогов и сборов Принципы построения системы налогов и сборов Классификация налогов и сборов А. Федеральные налоги и сборы Б. Региональные налоги и сборы В. Местные н

Название:Проектирование транспортной системы нового города
Просмотров:172
Описание: Введение В курсовой работе рассматривается вариант проектирования транспортной системы нового города. В качестве исходных параметров принимаются: численность населения города, уровень легковой и грузовой

 
     

Вечно с вами © MaterStudiorum.ru