MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Численные методы

Название:Численные методы
Просмотров:258
Раздел:Математика
Ссылка:Скачать(59 KB)
Описание: ЛЕКЦИЯ № 12 ТИПОВЫЕСПОСОБЫ ПРИБЛИЖЕНИЯ ПРИ ПОМОЩИ МНК НЕЛИНЕЙНЫХ ФУНКЦИЙ В ЛИНЕЙНЫЕ Подавляющее большинство процессов реального мира  носит линейный характер, поэтому область, использования линейных мо

Часть полного текста документа:

ЛЕКЦИЯ № 12

ТИПОВЫЕСПОСОБЫ ПРИБЛИЖЕНИЯ ПРИ ПОМОЩИ МНК НЕЛИНЕЙНЫХ ФУНКЦИЙ В ЛИНЕЙНЫЕ

Подавляющее большинство процессов реального мира  носит линейный характер, поэтому область, использования линейных моделей весьма ограничена, в то же время для построения нелинейных моделей хорошо разработан математический аппарат. Рассмотрим некоторое преобразование, позволяющее при построении нелинейными функциями воспользоваться методом МНК для линейной функции.

Аппроксимируемая                     Линейная                    Замена

функция                                         функция

                                                

Вообще полиномы выше 6-ой степени при помощи МНК никогда не строят, т.к. появляются серьёзные ошибки округлений и раскачивания. На практике ограничиваются квадратической зависимостью.

 

МНК для системы линейно- независимых функций.

Пусть задана система линейно-независимых  функций одной переменной . Под линейно-независимой функцией понимаем такую систему, в которой ни одна из функций не может быть представлена в виде линейной комбинации остальных функций.

Задана f(x) таблично на [a;b] по системе  узлов xj ,yj=f(xj)

Рассмотрим приближение f(x) при помощи обобщенного многочлена:

                                                             (12.1)

Необходимо найти неизвестные коэффициенты из (12.1)

                                                            (12.2)

Критерий (12.2) представляет собой квадратичную функцию относительно параметров bi.

Запишем

                                                                            (12.3)

Получим

                                         (12.4)

Система (12.4) представляет собой СЛАУ относительно параметров bi и может быть решена одним из известных методов.

Рассмотрим один из частных случаев этой системы, когда функции  являются ортогональными.

Введем понятие скалярного произведения функции.

                                                                        (12.5)

Линейно-независимая система функций  является ортогональной если

Для системы ортогональных функций решение системы (12.4) получается элементарно.

                                                                                                (12.6)

Коэффициенты (12.6) называются коэффициентами Фурье, а многочлен (12.1) называется обобщенным многочленом Фурье.

Тригонометрические ряды и полиномы Фурье в использовании МНК

Для приближения тригонометрических функций в анализе используют тригонометрические ряды Фурье.

Периодической называется функция, для которой выполняется равенство:

f(x+KP)=f(x)

P-наименьший положительный период.

Пусть g(x) имеет P, тогда f(x)=g(Px/2π) будет иметь период 2π.

Пусть f(x) –функция, имеющая период 2π, тогда она может быть представлена рядом:

                                                                (12.7)

                                                                             (12.8)

(12.8) тригонометрический ряд Фурье.

                                                                  (12.9)

Коэффициенты Фурье могут быть получены также методом МНК для системы ортогональных линейно-независимых функций. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru