Міністерство освіти і науки України
Прикарпатський національний університет імені Василя Стефаника
Факультет математики та інформатики
кафедра диференціальних рівнянь і прикладної математики
Курсова робота на тему:
Деякі скінченно-різнецеві методи розв’язування
звичайних диференціальних рівнянь
Виконав:
студент групи ПМ-41
Васьків Святослав
Перевірив:
науковий керівник:
Василишин П.Б.
Івано-Франківськ 2010
План
Вступ.
1. Чисельна ітерація рівнянь Ньютона
2. Алгоритм Бімана і Шофілда
3. Метод Рунге-Кутта
a) Метод Рунге — Кутта 4-го порядку
б) Неявні схеми Рунге-Кутта
в) Неявні інтерполяційні схеми
г) Програма Рунге-Кутта на мові С#
д) Програма Beeman
4. Метод Адамса
5.Метод Крилова
6. Метод Чаплигіна
Висновок
Список використаної літератури
Вступ
Приведемо декілька найбільш відомих скінченно-різнецевих методів рішення рівнянь руху з непереривною силою. Важливо пам'ятати про те, що успішне використання чисельного метода визначається не лише тим, наскільки добре він наближає похідну на кожному кроці, але і тим, наскільки добре він апроксимує інтеграли руху, наприклад повну енергію. Безліч алгоритмів, використовуються в наш час, свідчить про те, що жоден метод не перевершує по усіх параметрах усіх інших.
1. Чисельна ітерація рівнянь Ньютона
Для спрощення запису розглянемо одновимірний рух частини і запишемо рівняння Ньютона у виді:
(1)
(2)
Метою усіх скінцеворізнецевих методів являється знаходження значень x n+1 і v n+1(точка в "фазовому просторі") у момент часу tn+1=tn+∆t Нам вже відомо, що величину кроку ∆t потрібно вибирати таким чином, щоб метод інтегрування породжував приймати однакове рішення. Один із способів перевірки стійкості методу полягає в контролі величини повною енергії і забезпеченні того, щоби вона не відхилялася від початкового значення у разі, коли повна енергія зберігалась. Досить велике значення кроку приводить до не збереження повної енергії і до різних розв’язків для хn+1 i vn+1, тобто до таких розв’язків, які все більше відхиляються з потоком часу від істинного розв’язку.
Суть багатьох алгоритмів, можна зрозуміти, розкладаючи
vn+1 ≡ v(tn+∆t) i
xn+1 ≡ x(tn+∆t ) в ряд Тейлора. Запишемо
(3)
і
(4)
Добре відомий метод Ейлера еквівалентний збереженню в формулі (3) членів
(5)
і
(6)
Оскільки ми утримали у формулах (5-6) члени порядку ∆t, то «локальна» погрішність (погрішність на кроці) складає величину O(∆t)2
Оскільки ми від кроку до кроку погрішності накопичуються, позтому можна припускати, що «глобальна» погрішність, що є сумарною погрішністю за розглядом проміжок часу, буде величиной O(∆t). Ось ця оцінка погрішності цілком правдоподібна, оскільки число кроків, на яке розбивається часовий інтервал, пропорційна 1/∆t. Звідси випливає, порядок глобальної погрішності збільшується в ∆t разів по відношенню до локальної погрішності. Оскільки прийнято "говорити, що метод має n-й порядок аппроксимації, якщо ця локальна погрішність рівна О((∆t)n+1), то метод Ейлера відноситься до методів першого порядку.
Метод Ейлера являється асиметричним, оскільки він просуває вирішення на один часовий крок ∆t, а використовує при цьому інформацію про похідну тільки в початковій точці інтервалу. ............