MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Дискретная теория поля

Название:Дискретная теория поля
Просмотров:140
Раздел:Математика
Ссылка:Скачать(90 KB)
Описание: Оглавление Введение 1. Понятие поверхностного интеграла 2. Свойства поверхностного интеграла 3. Поток векторного поля через поверхность Заключение Список литературы Введение Данная работа п

Часть полного текста документа:

Оглавление

Введение

1. Понятие поверхностного интеграла

2. Свойства поверхностного интеграла

3. Поток векторного поля через поверхность

Заключение

Список литературы


Введение

Данная работа посвящена дискретной теории поля.

Цель данной работы рассмотреть дискретную теорию поля.

Задачи:

-  Определить понятие поверхностного интеграла.

-  Рассмотреть основные свойства поверхностных интегралов.

-  Рассмотреть примеры вычисления поверхностных интегралов.

-  Рассмотреть поток векторного поля через поверхность, как механический смысл поверхностного интеграла.

Методологической и теоретической основой при написании работы послужила учебная литература и труды отечественных и зарубежных авторов.


1. Понятие поверхностного интеграла

Рассмотрим некоторую поверхность S, ограниченную контуром L, и разобьем ее на части S1, S2,…, Sn (при этом площадь каждой части тоже обозначим Sn). Пусть в каждой точке этой поверхности задано значение функции f(x, y, z) (Рис. 1).

Выберем в каждой части Si точку Mi (xi, yi, zi) и составим интегральную сумму

.

Если существует конечный предел при  этой интегральной суммы, не зависящий от способа разбиения поверхности на части и выбора точек Mi, то он называется поверхностным интегралом первого рода от функции f(M) = f(x, y, z) по поверхности S и обозначается


.

Разобьем поверхность S на части S1, S2,…, Sn, выберем в каждой части Si точку Mi(xi, yi, zi), и умножим f(Mi) на площадь Di проекции части Si на плоскость Оху. Если существует конечный предел суммы

,

не зависящий от способа разбиения поверхности и выбора точек на ней, то он называется поверхностным интегралом второго рода от функции f(M) по выбранной стороне поверхности S и обозначается

Подобным образом можно проектировать части поверхности на координатные плоскости Оxz и Оyz. Получим два других поверхностных интеграла 2-го рода:

 и .

Рассмотрев сумму таких интегралов по одной и той же поверхности соответственно от функций P(x, y, z), Q(x, y, z), R(x, y, z), получим поверхностный интеграл второго рода общего вида:


Свойства поверхностного интеграла.

Рассмотрим свойства поверхностных интегралов первого рода:

1.  , где S – площадь поверхности.

2.  , k=const

3. 

4.  Если поверхность разделена на части S1 и S2, то

5.  Если , то

6. 

7.  Теорема о среднем.

Если функция F(x, y, z) непрерывна в любой точке поверхности S, то существует точка (a, b, g) такая, что

S – площадь поверхности.

Какова бы ни была функция f(x, у, z), определенная в точках поверхности (S) и ограниченная:

,


имеет место равенство

в предположении существования одного из этих интегралов (что влечет за собой и существование другого).

Таким образом, для сведения поверхностного интеграла первого типа к обыкновенному двойному нужно лишь заменить координаты х, у, z их выражениями через параметры, а элемент площади dS — его выражением в криволинейных координатах.

Рассмотрим несколько примеров вычисления поверхностных интегралов.

Пример 1. Вычислить интеграл по верхней стороне полусферы

Решение.

Преобразуем уравнение поверхности к виду:


Заданная поверхность проецируется на плоскость XOY в круг, уравнение которого:

Для вычисления двойного интеграла перейдем к полярным координатам:

Пример 2. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Общее понятие определённого интеграла, его геометрический и механический смысл
Просмотров:130
Описание: Кафедра: Высшая математика Реферат по дисциплине Высшая математика Тема: «Общее понятие определённого интеграла, его геометрический и механический смысл. Необходимое условие ин

Название:Несобственные интегралы
Просмотров:136
Описание: Дисциплина: «Высшая математика» Тема: «Несобственные интегралы» 1. Несобственные интегралы с бесконечными пределами При введении понятия определенного интеграла, а такж

Название:Технология изготовления плат толстопленочных гибридных интегральных схем
Просмотров:97
Описание: ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РФ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ЭЛЕКТРОНИКИ И ПРИБОРОСТРОЕНИЯ Кафедра: Проектирование и технология электронных и вычислительных систе

Название:Влияние метилирование поверхности на устойчивость наночастиц кремния
Просмотров:170
Описание: Влияние метилирование поверхности на устойчивость наночастиц кремнияC. Б. Худайберганов, А. Б. Нормуродов, А.П. Мухтаров Интерес к наноразмерному кремнию возник в связи с открытием эффекта фотолюменесценции

Название:Классификация форм земной поверхности
Просмотров:177
Описание: КЛАССИФИКАЦИЯ ФОРМ ЗЕМНОЙ ПОВЕРХНОСТИ Из всех отделов физической географии отдел о формах земной поверхности (геоморфология) является важнейшим, так как формы рельефа более, чем какие-либо другие факторы, о

 
     

Вечно с вами © MaterStudiorum.ru