MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Психология -> Доказательство и его разновидности

Название:Доказательство и его разновидности
Просмотров:96
Раздел:Психология
Ссылка:Скачать(14 KB)
Описание: СОДЕРЖАНИЕ 1. ПРЯМОЕ И КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО 2. СЛЕДСТВИЯ, ПРОТИВОРЕЧАЩИЕ ФАКТАМ 3. РАЗДЕЛИТЕЛЬНОЕ ДОКАЗАТЕЛЬСТВО СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1 ПРЯМОЕ И КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО Немецкий

Часть полного текста документа:

СОДЕРЖАНИЕ

1. ПРЯМОЕ И КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО

2. СЛЕДСТВИЯ, ПРОТИВОРЕЧАЩИЕ ФАКТАМ

3. РАЗДЕЛИТЕЛЬНОЕ ДОКАЗАТЕЛЬСТВО

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


1 ПРЯМОЕ И КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО

Немецкий философ XIX в. А. Шопенгауэр считал математику довольно интересной наукой, но не имеющей никаких приложений, в том числе и в физике. Он даже отвергал саму технику строгих математических доказательств. Шопенгауэр называл их мышеловками и приводил в качестве примера доказательство известной теоремы Пифагора. Оно является, конечно, точным; никто не может счесть его ложным. Но оно представляет собой совершенно искусственный способ рассуждения. Каждый шаг его убедителен, однако к концу доказательства возникает чувство, что вы попали в мышеловку. Математик вынуждает вас допустить справедливость теоремы, но вы не получаете никакого реального понимания. Это все равно, как если бы вас провели через лабиринт. Вы наконец выходите из лабиринта и говорите себе: «Да, я вышел, но не знаю, как здесь очутился». [5, c. 56]

Позиция Шопенгауэра, конечно, курьез, но в ней есть момент, заслуживающий внимания. Нужно уметь проследить каждый шаг доказательства. Иначе его части лишатся связи, и оно в любой момент может рассыпаться, как карточный домик. Но не менее важно понять доказательство в целом, как единую конструкцию, каждая часть которой необходима на своем месте. Как раз такого целостного понимания не хватало, по всей вероятности, Шопенгауэру. В итоге в общем-то простое доказательство представилось ему блужданием в лабиринте: каждый шаг пути ясен, но общая линия движения покрыта мраком.

Доказательство, не понятое как целое, ни в чем не убеждает. Даже если выучить его наизусть, предложение за предложением, к имеющемуся знанию предмета это ничего не прибавит. Следить за доказательством и лишь убеждаться в правильности каждого его последующего шага - это, по словам французского математика А. Пуанкаре, равносильно такому наблюдению за игрой в шахматы, когда замечаешь только то, что каждый ход подчинен правилам игры.

Минимальное требование - это понимание логического выведения как целенаправленной процедуры. Только в этом случае достигается интуитивная ясность того, что мы делаем.

«Я принужден сознаться, - заметил как-то Пуанкаре, - что положительно не способен сделать без ошибки сложение. Моя память не плохая; но чтобы стать хорошим игроком в шахматы, она оказалась бы недостаточной. Почему же она не изменяет мне в сложных математических рассуждениях, в которых запутались бы большинство шахматных игроков? Это происходит, очевидно, потому, что в данном случае память моя направляется общим ходом рассуждения. Математическое доказательство не есть простое сцепление умозаключений: это умозаключения, расположенные в определенном порядке; и порядок, в котором расположены эти элементы. Если у меня есть чувство... этого порядка, вследствие чего я сразу могу обнять всю совокупность рассуждений, мне уже нечего бояться забыть какой-либо элемент; каждый из них сам собою займет свое место...» [5, c. 59]

То, что создает, по выражению Пуанкаре, «единство доказательства», можно представить в форме общей схемы, охватывающей основные его шаги, воплощающей в себе общий принцип или его итоговую структуру. Именно такая схема остается в памяти, когда забываются подробности доказательства. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Доказательство теоремы о представлении дзета-функции Дедекинда
Просмотров:494
Описание: Содержание Введение Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле Глава 2. Вывод функционального уравнения дзета-функции Дедекинда Заключение Список используем

Название:Институт раскрытия доказательств в англо-саксонской и российской системах законодательства
Просмотров:379
Описание: САНКТ-ПЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ФИНАНСОВ ЮРИДИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ГРАЖДАНСКОГО ПРАВА КУРСОВАЯ РАБОТА по дисциплине Гражданский процесс Тема: ИНСТИТУТ РАСК

Название:Понятие и классификация судебных доказательств
Просмотров:270
Описание: ГОУ ВПО «РОССИЙСКАЯ ПРАВОВАЯ АКАДЕМИЯ МИНИСТЕРСТВА ЮСТИЦИИ РОССИЙСКОЙ ФЕДЕРАЦИИ» ПОВОЛЖСКИЙ (г. Саратов) ЮРИДИЧЕСКИЙ ИНСТИТУТ (филиал) КАФЕДРА ГРАЖДАНСКО-ПРАВОВЫХ ДИСЦИПЛИН Курсовая работ

Название:Институт доказательства в гражданском процессе
Просмотров:274
Описание: Содержание Введение Глава 1. Доказательства в гражданском судопроизводстве 1.1  Понятие доказательств 1.2  Относимость доказательств 1.3  Допустимость доказательств 1.4  Оценка доказательст

Название:Допустимость доказательств в уголовном процессе
Просмотров:218
Описание: Оглавление Введение Глава 1 Доказывание в уголовном процессе 1.1 Понятие процесса доказывания 1.2 Обстоятельства подлежащие доказыванию Глава 2 Допустимость доказательств как элемент процесса доказыван

 
     

Вечно с вами © MaterStudiorum.ru