MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Дослідження функцій гіпергеометричного рівняння

Название:Дослідження функцій гіпергеометричного рівняння
Просмотров:252
Раздел:Математика
Ссылка:Скачать(180 KB)
Описание: Курсова робота з математики «Дослідження функцій гіпергеометричного рівняння» Введення У зв'язку із широким розвитком чисельних методів і зростанням ролі чисельного е

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Курсова робота з математики

«Дослідження функцій гіпергеометричного рівняння»


Введення

У зв'язку із широким розвитком чисельних методів і зростанням ролі чисельного експерименту у великому ступені підвищився інтерес до спеціальних функцій. Це пов'язане із двома обставинами. По-перше, при розробці математичної моделі фізичного явища для з'ясування відносної ролі окремих ефектів вихідну задачу часто доводиться спрощувати для того, щоб можна було одержати рішення в легко аналізованій аналітичній формі. По-друге, при рішенні складних задач на ЕОМ зручно використовувати спрощені задачі для вибору надійних і економічних обчислювальних алгоритмів. Дуже рідко при цьому можна обмежитися задачами, що приводять до елементарних функцій. Крім того, знання спеціальних функцій необхідно для розуміння багатьох важливих питань теоретичної й практичної фізики.

Найбільше часто вживаними функціями є так звані спеціальні функції математичної фізики: класичні ортогональні поліноми (поліноми Якоби, Лагерра, Ермита), циліндричні, сферичні й гіпергеометричні. Теорії цих функцій і їхніх додатків присвячений цілий ряд досліджень.


1. Гіпергеометричне рівняння

1.1 Визначення гіпергеометричного ряду

Гіпергеометричним рядом називається статечної ряд виду

де z – комплексна змінна, , ,  - параметри, які можуть приймати будь-які речовинні або комплексні значення ( 0,-1,-2,…),і символ  позначає величину

= =1

Якщо  й  – нуль або ціле негативне число, ряд обривається на кінцевому числі членів, і сума його являє собою поліном відносно z. За винятком цього випадку, радіус збіжності гіпергеометричного ряду рівняється одиниці, у чому легко переконатися за допомогою ознаки збіжності Даламбера: думаючи

zk

маємо

= ,

коли k , тому гіпергеометричний ряд сходиться при <1 і розходиться при >1.

Сума ряду

F( , , ,z) = , <1                                        (1.1)

називається гіпергеометричною функцією.

Дане визначення гіпергеометричної функції придатне лише для значень z, що належать колу збіжності, однак надалі буде показано, що існує функція комплексного змінного z, регулярна в площині з розрізом (1, ) яка при <1 збігається з F( , , ,z). Ця функція є аналітичним продовженням F( , , ,z) у розрізану площину й позначається тим же символом.

Щоб виконати аналітичне продовження припустимо спочатку що R( )>R( )>0 і скористаємося інтегральним поданням

                                                 (1.2)

k=0,1,2,..

Підставляючи (1.2) в (1.1) знаходимо

F( , , ,z) = = =

причому законність зміни порядку інтегрування й підсумовування випливає з абсолютної збіжності.


Дійсно, при R( )>R( ) >0 і <1

=

= F( , R( ),R( ), )

На підставі відомого біноминального розкладання

=(1-tz)-a(1.3)

0 t 1, <1

тому для F( , , ,z)         виходить подання

F( , , ,z)=                          (1.4)

R( )>R( ) >0 і <1

Покажемо, що інтеграл у правій частині останньої рівності зберігає зміст і представляє регулярну функцію комплексного змінного z у площині з розрізом (1, ).

Для z приналежні області ,  (R – довільно велике,  і  довільно малі позитивні числа), і 0 < t < 1 підінтегральне вираження є регулярна функція z і безперервна функція t ; тому досить показати що інтеграл сходиться рівномірно в розглянутій області.    Доказ треба з оцінки


(М – верхня границя модуля функції (1-tz)-a, безперервної в замкнутій області

, , 0 t 1)

що показує, збіжність інтеграла буде при R( )>R( ) >0 інтеграл

 сходиться

Таким чином, умова <1     в (1.4) може бути відкинуто, і шукане аналітичне продовження гіпергеометричної функції в розрізану площину дається формулою

F( , , ,z)=                          (1.5)

R( )>R( ) >0;

У загальному випадку, коли параметри мають довільні значення, аналітичне продовження F( , , ,z) площина з розміром (1, ) може бути отримане у формі контурного інтеграла, до якого приводить підсумовування ряду (1.1) за допомогою теорії відрахувань.

Більше елементарний метод продовження, що не дає, однак, можливість одержати в явній формі загальне аналітичне вираження гіпергеометричної функції, полягає у використанні рекурентного співвідношення (1.6)

 F( , , ,z) =  +

справедливість якого може бути встановлена підстановкою в нього ряду (1.1). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru