Міністерство освіти і науки України
ДИПЛОМНА РОБОТА
Дослідження сервоприводу з урахуванням нелінійності
2007 р
Вступ
Упровадження нової техніки в соціалістичне народне господарство базується на всі зростаючі механізації і автоматизації процесів управління машинами і апаратами. Особливо велике вживання автоматизація знаходить в сучасній авіаційній і ракетній техніці.
Запуск Радянським Союзом перших штучних супутників Землі космічних ракет, перші в світі польоти навкруги Землі на космічному кораблі радянських космонавтів Ю.А. Гагарина і Г.С. Титова показали блискучі успіхи в розвитку вітчизняної ракетної техніки, автоматики і систем управління. Системи автоматичного управління літальними апаратами по пристрою представляють складну комбінацію гіроскопічних, електронних, електромеханічних, газових і гідравлічних агрегатів і приводів. Гідравлічні приводи в цих системах частіше за все виконують одночасно функції підсилювачів потужності і виконавчих механізмів. За допомогою гідравлічних приводів можна досягти посилення сигналів управління по потужності в декілька тисяч раз і одержати зусилля, що розташовуються, на органах управління (кермі, площинах та ін.) в декілька тонн.
Гідравлічним приводом називають систему агрегатів і машин, що служить для передачі механічної енергії за допомогою рідини.
Основними елементами гідравлічного приводу є перетворювачі енергії – насоси і гідродвигуни.
Насосом називають гідравлічну машину, що перетворює механічну енергію приводного двигуна в енергію потоку рідини. Гідродвигуном називають машину, що перетворює енергію рідини в механічну енергію.
Гідравлічним приводом називають об'ємним (на відміну від гідродинамічного), якщо він складається з насосів і гідродвигунів об'ємного типу. Як механізми регулювання швидкості в гідроприводах стежачих систем, застосовують дросельні (золотникові) механізми і насоси змінної продуктивності.
1. Стан проблеми і постановка задач проектування
Нелінійності є в будь-якому реальному приводі, можуть істотно впливати на його динамічні властивості, зокрема на стійкість.
Цей вплив виявляється в наступному: привод, стійкий і має достатній запас стійкості в лінійному наближенні, може виявитися не стійким або не володіючим тим запасом стійкості, який очікується. Такий вплив надають частіше за все «петлеві нелінійності (люфт, гістерезис), але при деяких положеннях в структурі приводу до цього ж ефекту можуть привести і однозначні нелінійності, наприклад навіть такі, як зона нечутливості [1].
В приводі можуть з'явитися принципово нові типи руху, які не можуть існувати в лінійних системах і тому не можуть бути навіть якісно пояснені з позиції лінійної моделі. До таких рухів відносяться в першу чергу автоколивання. Автоколивання можуть викликати ті ж нелінійності, які викликають зменшення запасу стійкості. В одноконтурних системах – це петлеві нелінійності, в неодноконтурних – однозначні.
Допустимі або недопустимі автоколивання в реальній системі – питання дискусійне. Все залежить від їх параметрів, тобто від розмаху і частоти. Одне поза сумнівом, автоколивання не повинні порушувати вимоги по точності, отже, якщо їх і можна допустити, то тільки при таких, амплітудах, при яких викликана ними помилка сумісно з вимушеною помилкою, викликаною відтворенням всіх заданих законів управління, не виходить за межі допустимих.
Для достатньо повної думки про динамічні властивості проектованого приводу і його придатності для виконання доручених йому функцій потрібно розглянути і його. ............