MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Экономико-математическое моделирование -> Доверительные интервалы прогноза. Оценка адекватности и точности моделей

Название:Доверительные интервалы прогноза. Оценка адекватности и точности моделей
Просмотров:142
Раздел:Экономико-математическое моделирование
Ссылка:Скачать(243 KB)
Описание:   КОНТРОЛЬНАЯ РАБОТА по дисциплине «Планирование и прогнозирование в условиях рынка» на тему: Доверительные интервалы прогноза Оценка адекватности и точности моделей Содерж

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

 

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Планирование и прогнозирование

в условиях рынка»

на тему: Доверительные интервалы прогноза

Оценка адекватности и точности моделей


Содержание

 

Глава 1. Теоретическая часть. 3

Глава 2. Практическая часть. 9

Список используемой литературы.. 13


Глава 1. Теоретическая часть

Доверительные интервалы прогноза. Оценка адекватности и точности моделей

 

1.1 Доверительные интервалы прогноза

Заключительным этапом применения кривых роста является экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t, соответствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени определяется только одно значение прогнозируемого показателя.

На практике в дополнении к точечному прогнозу желательно определить границы возможного изменения прогнозируемого показателя, задать "вилку" возможных значений прогнозируемого показателя, т.е. вычислить прогноз интервальный.

Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:

1.         субъективной ошибочностью выбора вида кривой;

2.         погрешностью оценивания параметров кривых;

3.         погрешностью, связанной с отклонением отдельных наблюдений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, определяется в виде:


        (1.1.),

где n - длина временного ряда;

L -период упреждения;

yn+L -точечный прогноз на момент n+L;

ta- значение t-статистики Стьюдента;

Sp- средняя квадратическая ошибка прогноза.

Предположим, что тренд характеризуется прямой:

Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содержат погрешность. Погрешность параметра ао приводит к вертикальному сдвигу прямой, погрешность параметра a1- к изменению угла наклона прямой относительно оси абсцисс. С учетом разброса конкретных реализаций относительно линий тренда, дисперсию  можно представить в виде:

 (1.2.),

где - дисперсия отклонений фактических наблюдений от расчетных;

t1 - время упреждения, для которого делается экстраполяция;

 

t1 = n + L ;


t - порядковый номер уровней ряда, t = 1,2,..., n;

 - порядковый номер уровня, стоящего в середине ряда,

Тогда доверительный интервал можно представить в виде:

 (1.3.),

Обозначим корень в выражении (1.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= taK . Тогда интервальная оценка будет иметь вид:

 (1.4.),

Выражение, аналогичное (1.3.), можно получить для полинома второго порядка:

 (1.5.),

или

 (1.6.),

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:


 (1.7.),

где yt- фактические значения уровней ряда,

 - расчетные значения уровней ряда,

n- длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.

Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении Sy, так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

 

Рисунок 1.1. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Социальное прогнозирование в сфере демографических процессов
Просмотров:135
Описание: Оглавление Введение 1. Теоретическое обоснование методологий демографического прогнозирования: 1.1  Понятие и сущность демографических процессов 1.2  Сущность и содержание технологии социального п

Название:Інтерполяція, екстраполяція та прогнозування в рядах динаміки правової статистики
Просмотров:506
Описание: МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИКУРСОВА РОБОТА на тему «Інтерполяція, екстраполяція та прогнозування в рядах динаміки правової статистики » з дисципліни “Правова статистика ” Харків

Название:Непрерывность функции на интервале и на отрезке
Просмотров:295
Описание: Непрерывность функции на интервале и на отрезке   Определение 3.3 Пусть - некоторая функция, - её область определения и - некоторый (открытый) интервал (может быть, с и/или )7. Назовём функцию непрерывной на интер

Название:Методы предвидения и прогнозирования в политике
Просмотров:133
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ РЕФЕРАТ на тему «Методы предвидения и прогнозирования в политике» по дисциплине «Политология» КИЕВ 2011 СОДЕР

Название:Методологические основы бюджетного планирования и прогнозирования на примере бюджета города Калининград
Просмотров:236
Описание: Министерство образования и науки Российской Федерации Санкт-Петербургского государственного политехнического университета Кафедра финансов, денежного обращения и кредита Курсовая ра

 
     

Вечно с вами © MaterStudiorum.ru