ФГОУ ВПО “Чувашский государственный университет имени
И.Н. Ульянова”
Кафедра высшей математики
Курсовая работа
На тему: «Единое пересечение кривых в пространстве»
Выполнил студент
группы: РТЭ 11-10
Марков К. Ю.
Работу проверил:
Поляков Н.Д.
Чебоксары 2010г.
Содержание
Введение
1 Теорема единственности для кривых второго порядка
2 Различные способы доказательства теоремы единственности для кривых второго порядка
3 Пучок кривых второго порядка
4 Теорема единственности для поверхностей второго порядка
Список литературы
Введение
Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур.
Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Ещё позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, а по достижении второй космической скорости тело по параболе покинет поле притяжения Земли.
1 Теорема единственности для кривых второго порядка
Докажем что для кривых второго порядка так называемую «теорему единственности». Но сначала докажем следующее.
Теорема 1. Пусть на плоскости даны пять точек:
M1 = (x1,y1), М2 = (х2 , у2), М3 = (х3, у3), М4 = (x4,y4), М5 = (х5, у5),
из которых никакие четыре не лежат на одной прямой. Тогда однозначно, с точностью до числового множителя, определены коэффициенты а11=А, а12=В, а22=С, а1=D, a2=E, a0=H в уравнении
F(x, y)=a11x2 + 2a122xy + a22y2 + 2a1x + 2a2y + a0 = 0 (1)
кривой второго порядка, проходящей через эти точки, откуда следует, что кривая эта существует и единственна.
При этом, если данные пять точек действительны, то и проходящая через них единственная кривая второго порядка действительна.
Доказательство. Напишем условие того, что каждая из точек M1, M2, M3, M4, M5 лежит на кривой, заданной уравнением (1) с пока еще неизвестными коэффициентами а11=А, а12=В, а22=С, а1=D, a2=E, a0=H . Получаем систему пяти уравнений:
Ax21+2Bx1yl + Cy21 + 2Dx1 + 2Ey1 + H=0,
Аx22+2Вх2у2 + Cy 22 + 2Dx2 + 2Еу2 + Н =0,
Ax23+ 2Bx3y3 + Cy 23 + 2Dx3 + 2Еу3 + H=0, (2)
Аx24+ 2Bx4y4 + Cy 24 + 2Dx4 + 2Еу4 + Н=0,
Аx25+ 2Вх5у5 + Cy 25 + 2Dx5 + 2Еу5 + H=0.
относительно неизвестных А, В, С, D, Е, Н. Это — система пяти линейных однородных уравнений с шестью неизвестными. При этом, если точки M1, M2, M3, M4, M5 действительны, то и коэффициенты x21, 2x1yl и т. д. в уравнениях (2) действительны. Если система (2) — независима, то неизвестные А, В, С, D, Е, Н определены однозначно с точностью до числового множителя, и теорема доказана.
Предположим, что система (2) зависима. Тогда одно из уравнений, пусть пятое, есть линейная комбинация остальных четырех. ............