Элементы биомеханики
План
1. Деформация и её виды
2. Основные характеристики деформации. Закон Гука для упругой деформации
3. Реологическое моделирование биотканей
4. Механические свойства биотканей
4.1 Механические свойства костной ткани
4.2 Механические свойства ткани кровеносных сосудов
1. Деформация и её виды
деформация биоткань механический костный сосуд
Деформацией называется изменение взаимного расположения точек тела, которое сопровождается изменением его форм и размеров, обусловленное действием внешних сил на тело.
Виды деформации:
1. Упругая – полностью исчезает после прекращения действия внешних сил.
2. Пластическая (остаточная) – остается после прекращения действия внешних сил.
3. Упруго-пластическая – неполное исчезновение деформации.
4. Вязко-упругая – сочетание вязкого течения и эластичности.
В свою очередь упругие деформации бывают следующих видов:
а) деформация растяжения или сжатия происходит под действием сил, действующих в направлении оси тела:
2. Основные характеристики деформации
Деформация растяжения (сжатия) возникает в теле при действии силы, направленной вдоль его оси.
где l0 – исходный линейный размер тела.
Δl – удлинение тела
[l] - м
Деформация ε (относительное удлинение) определяется по формуле
ε – безразмерная величина.
Мерой сил, стремящихся вернуть атомы или ионы в первоначальное положение является механическое напряжение σ. При деформации растяжения напряжение σ можно определить отношением внешней силы к площади поперечного сечения тела:
Упругая деформация подчиняется закону Гука:
где Е – модуль нормальной упругости (модуль Юнга – это механическое
напряжение, которое возникает в материале при увеличении
первоначальной длины тела в два раза).
Если живые ткани мало деформируется, то в них целесообразно определять не модуль Юнга, а коэффициент жесткости. Жесткость характеризует способность физической среды сопротивляться образованию деформаций.
Представим экспериментальную кривую растяжения:
ОА – упругая деформация, подчиняющася закону Гука. Точка В – это предел упругости т.е. максимальное напряжение при котором ещё не имеет место деформация, остающаяся в теле после снятия напряжения. ВД – текучесть (напряжение, начиная с которого деформация возрастает без увеличения напряжения).
Упругость, свойственную полимерам называют эластичностью.
Всякий обрзец, подвергнутый сжатию или растяжению вдоль его оси, деформируется так же и в перпендикулярном направлении.
Абсолютное значение отношения поперечной деформации к продольной деформации образца называется коэффициентом поперечной деформации или коэффициентом Пуассона и обозначается:
(безразмерная величина)
Для несжимаемых материалов (вязкотекучие пасты; резины) μ=0,5; для большинства металлов μ≈0,3.
Величина коэффициента Пуассона при растяжении и сжатии одна и та же. Таким образом, определяя коэффициент Пуассона можно судить о сжимаемости материала.
3. Реологическое моделирование биотканей
Реология – это наука о деформациях и текучести вещества.
Упругие и вязкие свойства тел легко моделируются.
Представим некоторые реологические модели.
а) Модель упругого тела – это упругая пружина.
Напряжение, возникающее в пружине, определяется законом Гука:
Если упругие свойства материала одинаковы во всех направлениях, то он называется изотропным, если эти свойства неодинаковы – анизотропным.
б) Модель вязкой жидкости - это жидкость, находящаяся в цилиндре с поршнем, неплотно прилегающим к его стенкам или: - это поршень с отверстиями, который движется в цилиндре с жидкостью.
Для этой модели характерна прямо пропорциональная зависимость между возникающим напряжением σ и скоростью деформации
где η – коэффициент динамической вязкости.
в) Реологическая модель Максвелла представляет собой последовательно соединенные упругий и вязкий элементы.
Работа отдельных элементов зависит от скорости нагрузки общего элемента.
Для упругой деформации выполняется закон Гука:
Откуда
Скорость упругой деформации будет:
(1)
Для вязкой деформации:
тогда скорость вязкой деформации будет:
(2)
Общая скорость вязко-упругой деформации равна сумме скоростей упругой и вязкой деформаций.
(3)
Это есть дифференциальное уравнение модели Максвелла.
Вывод уравнения ползучести биоткани. ............