Министерство образования республики Беларусь
Учреждение образование «Гомельский Государственный университет им. Ф.Скорины »
Математический факультет
Кафедра математического анализа
Допущена к защите
Зав. кафедрой _______ Малинковский Ю.В.
«___» ___________ 2002г.
Формирование понятия функции в курсе математики средней школы
Дипломная работа
Исполнитель
студентка группы М-61 _________ Рыкунова Юлия Витальевна
Научный руководитель _________Гаврилюк Александр Владимирович
к. п.н., доцент
Рецензент _________ Лытко Александр Александрович
к. п.н., доцент
Гомель 2002
Содержание:
Введение
§1 Различные трактовки понятия функции в школьном курсе математики.
§2 Функция и задание ее аналитическим выражением.
§3 Область определения функции и область значений функции как принципиально важные понятия в определении функции.
§4 Важнейшие классы функций: четные, конечные периодические.
§5 Тестовые работы по теме «Числовые функции. Четные и нечетные функции. Периодические функции»
Заключение.
Введение
Функция – одно из фундаментальных понятий математики, а функциональная идея является одной из определяющих идей развития школьного курса математики.
Данная дипломная работа посвящена анализу изучения понятия функции в школьном курсе математики. Основная ее цель – выявить ключевые моменты в определении этого понятия, на которые необходимо обратить особое внимание школьников при изучении данной темы, для того, чтобы не допустить формального усвоения данного понятия. В существующей школьной литературе (исключение составляет учебник «Алгебра» 8-11 класс К.О. Ананченко, Н.Т. Воробьева, Г.Н. Петровского) преобладает традиционная методика в изложении понятия функции, которая приводит к тому, что в результате выпускник школы, давая стандартное определение функции, не может ответить на элементарные вопросы, относящиеся к этой теме. В частности, на вопрос: «Какая функция называется ?», правильный и полный ответ можно услышать очень редко.
Работа состоит из 5 параграфов, введения и заключения.
В § 1 дается анализ двух основных трактовок понятия функции, имеющихся в рекомендованной школьной литературе: так называемое классическое, ориентированное в основном на приложение математики в физике и технике и опирающееся на понятие «переменная величина», и современное (или теоретико - множественное), связанное с отказом от расплывчатого понятия переменной величины, которое позволяет значительно расширить понятие функции, так как рассматривает функции не только от «величин».
В § 2 рассматриваются вопросы, связанные со способами задания функции. Ключевым моментом этого параграфа является анализ аналитического способа задания функций, т.е. с помощью формулы. Важным в этом параграфа является исследование соотношения понятий «функция» и «формула».
В третьем параграфе дается ответ на важный вопрос: «Что значит задать функцию?» Здесь речь в большей степени идет о множестве определения и множестве значений функций и важности понимания того, что говорить о функции, информация об области, определения которой отсутствует, не корректно. ............