Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Томский политехнический университет»
Факультет – Электрофизический
Направление (специальность) - электроэнергетика
Кафедра – техники и электрофизики высоких напряжений
Генератор импульсных напряжений
Курсовая работа по дисциплине
«Физика и техника генерирования и измерения высоковольтных и сильноточных источников »
Выполнила студентка группы 1М140 Холодная Г.Е.
Проверил доцент кафедры ТВЭН
Жгун Д.В.
Томск – 2009
СОДЕРЖАНИЕ
Введение
1. Теоретический анализ основных контуров газонаполненного генератора импульсных напряжений (ГИН), собранного по схеме Аркадьева-Маркса
1.1 Зарядный контур генератора импульсных напряжений
1.2 Анализ разрядного контура
1.3 Связь параметров импульса напряжения с параметрами разрядного контура ГИН
2. Расчёт основных частей схемы и элементов ГИНа
2.1 Определение максимального значения коэффициента использования разрядной схемы и постоянных времени экспонент
2.2 Расчет коэффициента использования импульса напряжения и допустимых пределов изменения соотношения С2/С1
2.3 Расчет разрядной схемы ГИН
2.4 Расчет разрядного контура на апериодичность
2.5 Измерение тока и напряжения ГИНа
3. Констуктивное исполнение ГИН
Заключение
Список использованной литературы
ПРИЛОЖЕНИЯ
Введение
Современное крупнотоннажное химическое производство, использующее традиционный подход – термическую активацию химических процессов, сталкивается с проблемой энергосбережения. Дальнейшее развитие промышленной базы влечет за собой наращивание объема отдельных производств, неоправданные затраты ресурсов для создания оборудования, истощение полезных ископаемых, металлов и топлива.
Естественным выходом из сложившейся ситуации, очевидно, должен быть переход на новые технологические решения в металлургии, химии, энергетике и ряде других отраслей. Качественные изменения возможны при резком повышении удельной производительности оборудования, т. е. производительности на единицу объема реакционной зоны. Для этого необходимо значительное увеличение температуры в зоне реакции, так как при этом химический процесс в рамках классической кинетики экспоненциально ускоряется в соответствии с законом Аррениуса. Нагрев реактора и реагентов до высоких температур требует также увеличения расхода энергоносителей, поэтому необходимы новые пути увеличения производительности и снижения удельных энергозатрат [1].
Совмещение реакционной зоны с газоразрядной позволяет локально нагревать реагенты до высоких температур без нагрева стенок реактора, что значительно сокращает непроизводительные потери энергии. Данные условия легко реализуются при возбуждении реагентной газовой смеси непрерывным электронным пучком, в дуговом разряде и др. При этом снижение барьера реакции достигается также за счет участия в реакции свободных радикалов и атомов, которые эффективно нарабатываются в газовых разрядах.
Для получения потоков заряженных частиц высокой энергии служат специальные устройства, которые называются ускорители. ............