ХАРАКТЕРИСТИКА ЗАСОБІВ контролю поверхонь і поверхневого шару
Вступ
Гарантоване одержання виробів з принципово новим рівнем функціональних та ін. властивостей, досягнення точності 0,1 мкм - 1 нм може бути отримано тільки за умови комплексної розробки високопрецизійних робочих процесів, вимірювальних систем, верстатів та ін. устаткування. Розміри деталей або їх елементів можуть складати широкий діапазон аж до декількох мкм, а точність верстатів повинна бути в межах 0,01 мкм.
1. Технологічне оснащення
Робочі процеси, пов'язані з механічною обробкою, базуються на надзвичайно високій точності характеристик переміщень верстата і геометрії інструмента. Субмікрометрична чи нанометрична точність переміщень верстата і геометрії інструмента є тут обов'язковими умовами. Металорізальні верстати, усе технологічне устаткування і вимірювальна апаратура включаються в єдину систему керування замкнутим циклом, що в сукупності забезпечує досягнення необхідної точності, швидкості та керування циклом позиціювання в системі інструмент-заготовка.
2. Засоби контролю поверхонь і поверхневого шару
фотоелектронна спектроскопія скануюча поверхня
У традиційних технологіях більшою мірою використовуються вимірювальні інструменти, прилади та пристрої, що дозволяють контролювати макро- і мікрогеометричні характеристики поверхні. Задача формування функціональних властивостей виробу породила необхідність розширення арсеналу засобів вимірювання та контролю, і призвела до використання фізичних методів досліджень: спектральний, рентгенівський і мікрорентгенівський аналізи, растрова та просвічуюча електронна мікроскопія, методи визначення залишкових мікро- і макронапруг, растрова та скануюча тунельна мікроскопія, атомна мікроскопія.
На початку 80-х німецький фізик Герд Бінніг та його швейцарський колега Генріх Рорер відкрили растрово-тунельний мікроскоп і одержали за нього в 1986 році Нобелівську премію в області фізики. За допомогою цього приладу можна спостерігати за поверхнею з точністю до атома. А зараз цей прилад є так само розповсюдженим, стандартним устаткуванням, як і його «молодший брат» - силовий мікроскоп. Досягнуто можливості вивчення нових поверхневих структур, атомних і молекулярних структур поверхні після різних способів формоутворення й обробки.
Таким чином, сьогодні в розпорядженні технологів, науковців може бути досить засобів для всебічної оцінки характеристик виробів на трьох рівнях:
• макроскопічному, коли глибина поверхневого шару, що перевіряється, складає 100-1000 мкм;
• мікроскопічному, коли глибина поверхневого шару, що перевіряється, складає діапазон від кількох сотень нанометрів до декількох мікронів;
• манометричний, коли цей шар не перевищує декількох атомних шарів.
Для оцінки топографії поверхні, її структури і шорсткості застосовують оптичну мікроскопію (ОМ), електронну мікроскопію (ЕМ), атомно-силову мікроскопію (АСМ), тунельну електронну мікроскопію (ТЕМ).
Кристалографію поверхневих шарів деталей після виготовлення оцінюють за допомогою гамма-променевої й енергетичної фотонної спектроскопії. Традиційна широко застосовувана гамма спектроскопія дає уявлення про структуру кристалографічних тіл та їх напружений стан. ............