ЗМІСТ ВСТУП.. 2
1. ІСТОРІЯ ВІДКРИТТЯ І РОЗВИТКУ ХІМІЧНИХ ДЖЕРЕЛ СТРУМУ.. 3
2. ХІМІЧНІ ДЖЕРЕЛА СТРУМУ.. 14
2.1 ЗАГАЛЬНА ХАРАКТЕРИСТИКА.. 14
2.2 ПЕРВИННІ ДЖЕРЕЛА СТРУМУ.. 16
2.3 ВТОРИННІ ДЖЕРЕЛА СТРУМУ АБО АКУМУЛЯТОРИ.. 18
2.3.1 СВИНЦЕВИЙ КИСЛОТНИЙ АКУМУЛЯТОР. 19
2.3.2 КАДМІЄВО-НІКЕЛЕВИЙ ЛУЖНИЙ АКУМУЛЯТОР. 21
2.3.4 СРІБНО-ЦИНКОВИЙ ЛУЖНИЙ АКУМУЛЯТОР. 22
2.4 ПАЛИВНІ ЕЛЕМЕНТИ.. 23
2.5 ХІМІЧНІ ДЖЕРЕЛА СТРУМУ НА ОСНОВІ НЕВОДНИХ ЕЛЕКТРОЛІТІВ 26
ВИСНОВКИ.. 30
ВИКОРИСТАНА ЛІТЕРАТУРА.. 31
ВСТУП В сучасному світі широко використовуються багато явищ, що описуються за допомогою фізики і хімії. Вони знайшли своє застосування і стали не аби якими корисними для людства.
Хімічні джерела струму стали рішенням дуже багатьох проблем, а саме, як можна отримувати автономний струм, що отримується з маленьких елементів, відносно дешевий вид отримання струму.
У даній курсовій роботі розглянуто пер за все основні і найголовніші джерела хімічного струму. А саме гальванічні елементи, акумулятори, паливні елементи.
Цікава і історія розвитку хімічний джерел струму, а особливо відкриття Гальвані, яке також описано у курсовій роботі.
Не аби яку цікавість викликають і нові технології по отриманню струму за допомогою хімічних речовин, зараз дуже актуальні елементи з використанням літію, останніми роками ці елементи дуже добре зарекомендували себе. Отже - вивчити найголовніші властивості і принцип дії хімічних джерел струму є мета даної курсової роботи.
1. ІСТОРІЯ ВІДКРИТТЯ І РОЗВИТКУ ХІМІЧНИХ ДЖЕРЕЛ СТРУМУ Автономні (переносні) хімічні джерела струму діляться на первинні (гальванічні елементи) і вторинні (акумулятори). Первинні джерела після їхнього виснаження не заряджаються, а викидаються. Не дивно, що їхня вартість значно нижче, ніж в акумуляторів, що слугують, наприклад, у мобільних телефонах. Однак принцип дії в них один - окислювально-відновна хімічна реакція, при якій електрони, що переходять від відновника до окислювача, і є електричний струм.
До винаходу гальванічних елементів єдиним джерелом електрики були електричні електростатичні машини (назва походить від грецького слова "електрон" - бурштин; зі старовини була відома здатність шматків бурштину заряджатися при терті і притягати легкі предмети). У цих машинах електричний заряд виникає за рахунок тертя. Потім з'явилися індукційні машини, у яких заряди з'являлися на обертовних у протилежні сторони скляних дисках і накопичувалися на двох металевих кулях - розрядниках (такі машини можна побачити й у шкільному кабінеті фізики). Коли напруга на розрядниках перевищує напругу пробою повітря (приблизно 30 кіловольт/див), проскакує іскра і чутний тріск; аналогічне явище у великому масштабі відбувається і при розряді "дійсної" блискавки. Такі машини дозволяли проробляти деякі досліди (наприклад, за допомогою іскри можна було підпалити ефір), однак вони не могли давати електричний струм протягом хоча б декількох секунд.
У 1745-1746 роках німецький фізик Эвальд Юрген Фон Клейст і голландський фізик Питер Ван Мушенбрук, що працювали в місті Лейдене, створили простий прилад, що дозволяє зберігати електричний заряд, отриманий від електростатичної машини. Це був праобраз сучасних конденсаторів, що назвали лейденською банкою. ............