Часть полного текста документа:История развития понятия "функция" Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира. Пропедевтический период (с древнейших времен до 17 века) Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4 - 5 тыс. лет назад) пусть и несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости. Введение понятия функции через механическое и геометрическое представления (17 век) Начиная лишь с 17 века в связи с проникновением в математику идеи переменных понятие функции явно и вполне сознательно применяется. Путь к появлению понятия функции заложили в 17 веке французские ученые Франсуа Виет и Рене Декарт; они разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание. Введено было единое обозначение: неизвестных - последними буквами латинского алфавита: x, y, z, известных - начальными буквами того же алфавита: a, b, c,... и т. д. Под каждой буквой стало возможным понимать не только конкретные данные, но и многие другие; в математику пришла идея изменения. Тем самым появилась возможность записывать общие формулы. Кроме того, у Декарта и Ферма (1601 - 1665) в геометрических работах появляется отчетливое представление переменной величины и прямоугольной системы координат. В своей "Геометрии" в 1637 году Декарт дает понятие функции, как изменение ординаты точки в зависимости от изменения ее абсциссы; он систематически рассматривал лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться, таким образом, с понятием аналитического выражения - формулы. В 1671 году Ньютон под функцией стал понимать переменную величину, которая изменяется с течением времени (он называл ее "флюентой"). В "Геометрии" Декарта и работах Ферма, Ньютона и Лейбница понятие функции носило, по существу, интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функция от абсцисс (x); путь и скорость - функция от времени (t) и т. п. Аналитическое определение функции (17 - начало 19 века) Само слово "функция" (от латинского functio - совершение, выполнение) впервые было употреблено немецким математиком Лейбницем в 1673 г. в письме к Гюйгенсу (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону), в печати он его ввел с 1694 года. Начиная с 1698 года Лейбниц ввел также термины "переменная" и "константа". В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. ............ |