Лабораторная работа №1 Тема: Измерение линейных величин
Приборы и принадлежности: штангенциркуль, микрометр, измеряемые тела.
Нониус и микрометрический винт. Представим себе две линейки, сложенные вместе, как указано на рис. 1. Пусть цена деления (длина одного деления) верхней линейки равна l1, а цена деления нижней линейки – l2. Линейки образуют нониус, если существует такое число k, при котором
Kl2=(k + 1)l1 (1)
У линеек, изображенных на рис. 1, k = 4. Верхний знак в формуле (1) относится к случаю, когда деления нижней линейки длиннее делении верхней, т. е. когда l2 > l1. В противоположном случае следует выбирать нижний знак. Будем для определенности считать, что L2 > L1. Величина
δ= l2 – l1 = l1/k =l2/(k + 1) (2)
называется точностью нониуса.
рис. 1.
В частности, если L1 = 1 мм, k =10 то точность нониуса. δ = 0,1 мм. Как видно из рис. 1, при совпадении нулевых делений нижней и верхней шкал совпадают, кроме того, k-е деление нижней и (k+1)-е деление верхней шкалы, 2k-е деление нижней и 2(k+1)-е деление верхней шкалы и т. д.
Начнем постепенно сдвигать верхнюю линейку вправо. Нулевую деления линеек разойдутся и с начало совпадут первые деления линеек. Это случится при сдвиге l2 –l1, равном точности нониуса δ . при двойном сдвиге совпадут вторые деления линеек и т. д. если совпали m-е деления, можно, очевидно, утверждать, что их нулевые деления сдвинуты на mδ .
Высказанные утверждения справедливы в том случае, если сдвиг верхней линейки относительно нижней не превышает одного деления нижней линейки. При сдвиге ровно на деление (или несколько делений) нулевое деление верхней шкалы совпадает уже не с нулевым, а с первым (или n-м) делением нижней линейки. При небольшом дополнительном сдвиге с делением нижней линейки совпадает уже не нулевое, в первое деление и т. д. В технических нониусах верхнюю линейку делают обычно короткой, так что совпадать с нижними может лишь одно из делений этой линейки. В дальнейшем мы всегда будем предполагать, что нониусная линейка является в этом смысле короткой.
Применим нониус для измерения длины тела А (рис.2). как видно из рисунка, в нашем случае длина L тела А равна
L = nl2 + mδ (3)
(l2>l1). Здесь n – целое число делений нижней шкалы, лежащих влево от начала верхней линейки, а m- номер деления верхней линейки, совпадающего с одним из делений нижней шкалы (в том случае, если ни одно из делений верхней линейки не совпадает в точности с делениями нижней, в качестве m берут номер деления, которое ближе других подходит к одному из делений нижней шкалы).
рис. 2.
Часто подвижная часть нониуса (верхняя линейка на рис. 1) имеет более крупные деления, т. е. l1>l2 . метод определения длины тела в этом случае рекомендуется найти самостоятельно.
Аналогичным образом можно строить не только линейные, но и угловые нониусы. Нониусами снабжаются штангенциркули (рис. 3), теодолиты и многие другие приборы.
При точных измерениях расстояний нередко применяют микрометрические винты – винты с малым и очень точно выдержанным шагом. Такие винты употребляются, например, в микрометрах (рис. ............