С.П. Сущев
Задача оценки остаточного ресурса конструкций здания в вероятностной постановке является в настоящее время одной из злободневных задач в сфере обеспечения безопасности эксплуатации зданий, требующих своего разрешения в целях осуществления прогнозирования во времени величины этого ресурса вплоть до исчерпания зданием потребительной ценности. Общие принципы постановки такой задачи были рассмотрены ранее в [1].
Существующие или предлагаемые в настоящее время [см. 3, 4] методические разработки по определению остаточного ресурса конструкций здания, сооружения практически базируются на детерминистическом представлении процесса изменения свойств конструкции во времени. Нами рассмотрена возможность использования для описания закона изменения коэффициента k квадратной параболой, имеющей осью симметрии ось абсцисс, вершину в точке О (0;0) и вет- ви которой направлены в сторону отрицательных значений абсцисс, т. е. у2 = - 2рх (рис. 1), или k2 = 2р(t – a); а ≤ х ≤ 0. Здесь р =( k0 2 – 1)/(2 tu); а = (2 k0 2 tu)/(k0 2 – 1). Отсюда tu = t (k0 2 – 1)/ (k0 2 – k2). (1)
Рис.1.
Выбор этой зависимости объясняется е большим соответствием (медленное снижение функционального качества конструкции в начальном периоде эксплуатации и интенсивное падение его в конечном периоде) закону изменения величины k (t) в интервале от времени начала эксплуатации конструкции (k = k0) до момента е предельного состояния (k = 1). При статистическом истолковании коэффициентов запаса детерминистическая задача превращается в задачу об определении вероятности возможного срока допустимой работы конструкций здания (сооружения) по исходным вероятностным характеристикам случайных внешних условий и случайных параметров конструкций, тем самым открывает возможность для более обоснованного способа оценки надежности получаемых результатов.
Основные положения вероятностного подхода:
внешние условия эксплуатации конструкции суть случайные процессы;
за основной показатель наджности принимается вероятность пребывания параметров системы в некоторой допустимой области, нарушение нормальной эксплуатации приводит к выходу из этой области;
выход конструкции из строя является следствием постепенного накопления повреждений.
tRS = tu – t = t (k2 – 1)/ (k0 2 – k2) (2)
tRS – время остаточного ресурса – случайная функция времени.
Входящие в выражение (2) величины явля- ются различными по признаку статистической определнности: tRS = ƒ(t, k0, k); (3)
t – аргумент времени, детерминированное переменное значение времени;
k – случайная функция времени вида k = k [φ(Rt)/ψ(N)]; (4)
здесь: φ(Rt) – случайная функция качества конструкции во времени;
ψ(N) – неслучайная функция нагрузок на конструкцию во времени (определяется по нормативным документам);
k0 - случайная величина в момент времени t = t0, т.е. е можно рассматривать как реализацию случайной функции (4) при t = t0; предполагается, что распределение единичных реализаций k 0j соответствует нормальному закону, определяемому средним значением
Мkо = 1 n Σn j=1(k0j) (5)
и эмпирическим стандартом
S Kо = √‾‾1‾‾ n - 1 Σn j=1(k0j - Mko)2 (6).
Доверительный интервал, определяющий границы практически возможных значений R0 с наджностью Р равен
1 - eRo ≤ k0 / Мkо ≤ 1 + eRo (7). ............