MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп

Название:Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп
Просмотров:85
Раздел:Математика
Ссылка:Скачать(295 KB)
Описание: Министерство образования Республики Беларусь Учреждение образования "Гомельский государственный университет им. Ф. Скорины" Математический факультет Кафедра алгебры и геометрии К

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра алгебры и геометрии

КЛАССЫ КОНЕЧНЫХ ГРУПП , ЗАМКНУТЫЕ ОТНОСИТЕЛЬНО ПРОИЗВЕДЕНИЯ ОБОБЩЕННО СУБНОРМАЛЬНЫХ -ПОДГРУПП

Курсовая работа

Исполнитель:

Студентка группы М-43 МОКЕЕВА О. А.

Научный руководитель:

доктор ф-м наук, профессор Семенчук В.Н.

Гомель 2008


Содержание

Перечень условных обозначений

Введение

1 Некоторые базисные леммы

2 Критерий принадлежности факторизуемой группы

классическим классам конечных групп

3 Сверхрадикальные формации

Заключение

Список использованных источников


Перечень условных обозначений

Рассматриваются только конечные группы. Вся терминология заимствована из [44, 47].

 --- множество всех натуральных чисел;

 --- множество всех простых чисел;

 --- некоторое множество простых чисел, т. е. ;

 ---

дополнение к  во множестве всех простых чисел; в частности, ;

примарное число --- любое число вида .

Буквами  обозначаются простые числа.

Пусть  --- группа. Тогда:

 --- порядок группы ;

 ---

множество всех простых делителей порядка группы ;

-группа --- группа , для которой ;

-группа --- группа , для которой ;

 --- коммутант группы , т. е. подгруппа, порожденная коммутаторами всех элементов группы ;

 --- подгруппа Фиттинга группы , т. е. произведение всех нормальных нильпотентных подгрупп группы ;

 --- наибольшая нормальная -нильпотентная подгруппа группы ;

 --- подгруппа Фраттини группы , т. е. пересечение всех максимальных подгрупп группы ;

 --- наибольшая нормальная -подгруппа группы ;

 --- -холлова подгруппа группы ;

 --- силовская -подгруппа группы ;

 --- дополнение к силовской -подгруппе в группе , т. е. -холлова подгруппа группы ;

 --- нильпотентная длина группы ;

 --- -длина группы ;

 --- минимальное число порождающих элементов группы ;

 --- цоколь группы , т. е. подгруппа, порожденная всеми минимальными нормальными подгруппами группы ;

 --- циклическая группа порядка .

Если  и  --- подгруппы группы , то :

 ---  является подгруппой группы ;

 ---  является собственной подгруппой группы ;

 ---  является нормальной подгруппой группы ;

 --

- ядро подгруппы  в группе , т. е. пересечение всех подгрупп, сопряженных с  в ;

 --- нормальное замыкание подгруппы  в группе , т. е. подгруппа, порожденная всеми сопряженными с  подгруппами группы ;

 --- индекс подгруппы  в группе ;

;


 --- нормализатор подгруппы  в группе ;

 --- централизатор подгруппы  в группе ;

 --- взаимный коммутант подгрупп  и ;

 --- подгруппа, порожденная подгруппами  и .

Минимальная нормальная подгруппа группы  --- неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы ;

 ---  является максимальной подгруппой группы .

Если  и  --- подгруппы группы , то:

 --- прямое произведение подгрупп  и ;

 --- полупрямое произведение нормальной подгруппы  и подгруппы ;

 ---  и  изоморфны;

 --- регулярное сплетение подгрупп  и .

Подгруппы  и  группы  называются перестановочными, если .

Группу  называют:

-замкнутой, если силовская -подгруппа группы  нормальна в ;

-нильпотентной, если -холлова подгруппа группы  нормальна в ;

-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;

-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;

нильпотентной, если все ее силовские подгруппы нормальны;

разрешимой, если существует номер  такой, что ;

сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.

Монолитическая группа --- неединичная группа, имеющая единственную минимальную нормальную подгруппу.

-замкнутая группа --- группа, обладающая нормальной холловской -подгруппой.

-специальная группа --- группа, обладающая нильпотентной нормальной холловской -подгруппой.

-разложимая группа --- группа, являющаяся одновременно -специальной и -замкнутой.

Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.

Добавлением к подгруппе  группы  называется такая подгруппа  из , что .

Цепь --- это совокупность вложенных друг в друга подгрупп.

Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.

Ряд подгрупп  называется:

субнормальным, если  для любого ;

нормальным, если  для любого ;

главным, если  является минимальной нормальной подгруппой в  для всех .

Класс групп --- совокупность групп, содержащая с каждой своей группой  и все ей изоморфные группы.

-группа --- группа, принадлежащая классу групп .

Формация --- класс групп, замкнутый относительно факторгрупп и подпрямых произведений.

Если  --- класс групп, то:

 --- множество всех простых делителей порядков всех групп из ;

 --- множество всех тех простых чисел , для которых ;

 --- формация, порожденная классом ;

 --- насыщенная формация, порожденная классом ;

 --- класс всех групп , представимых в виде

где , ;

;

 --- класс всех минимальных не -групп, т. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Религиозная реформация в странах Востока
Просмотров:75
Описание:   Религиозная реформация в странах Востока План 1.  Христианство 2. Ислам 3. Индуизм 4. Сикхизм и джайнизм 5. Зороастризм 6. Буддизм 7. Конфуцианство 1. Хрис

Название:Информация как объект правоотношений
Просмотров:62
Описание: СОДЕРЖАНИЕ Введение 1. Основные положения информационного права 1.1 Информационное право 1.2 Информация как основной объект информационного права 1.3 Специфические особенности и юридические свойства и

Название:Финансовая информация. Особенности финансовых отношений в сфере страхования
Просмотров:53
Описание: Межрегиональная Академия Управления Персоналом Контрольная работа по дисциплине: Финансы Выполнила: Васильева Е.О. Группа: ТУст 07-08 Б1УЕП (4,6дс) Севасто

Название:Информация в маркетинговых исследованиях
Просмотров:57
Описание: Информация в маркетинговых исследованиях Содержание 1. Классификация маркетинговой информации и ее значение 2. Виды вторичной информации: внутренняя и внешняя 3. Достоинства и недостатки вторичных д

Название:Ренессанс и Реформация в Великом княжестве Литовском
Просмотров:131
Описание: Министерство культуры Республики Беларусь Учреждение образования «Белорусский государственный университет культуры и искусств» Кафедра философии Контрольная работа по теме: Ренес

 
     

Вечно с вами © MaterStudiorum.ru