Позитронно-эмиссионная томография (ПЭТ), она же двухфотонная эмиссионная томография — радионуклидный томографический метод исследования внутренних органов человека или животного.
История ПЭТ началась в 1950-ых, когда появилась возможность отображения позитрона, испускающего нуклиды: фотоны с высокой энергией, произведенные при уничтожении позитрона, можно использовать для описания физиологического 3D распределения химического состава. В середине 1950-ых, Терпогосян выдвинул идею, что, несмотря на короткое время полураспада этих радионуклидов, они пригодны для изучения регионального метаболизма.
Первый прототип ПЭТ сканера появился в 1952 году Массачусетском госпитале. Он имел всего лишь два детектора, разрешение было низким, но чувствительность устройства все же позволяла обнаружить опухоль и ее пространственное положение относительно срединной линии мозга.
Первые ПЭТ сканеры с множеством детекторов были созданы в начале 1960-ых и представляли собой системы с кольцом из 32 датчиков, позволяющие получать единичные срезы. Это позволило повысить чувствительность метода и получить двумерное изображение. В следующем поколении ПЭТ сканеров, появившемся в 1968 году был уменьшен размер датчика и добавлены дополнительные кольца, позволяющие одновременно получать несколько срезов с разрешением менее 1 см. Дальнейшее усовершенствование ПЭТ-сканеров состоит в повышении пространственного разрешения, чувствительности детекторов, увеличении числа одновременно получаемых срезов, коррекции аттенюации и разработке новых алгоритмов реконструкции изображений.
Итак, ПЭТ – это развивающийся диагностический и исследовательский метод ядерной медицины. В его основе лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределение в организме биологически активных соединений, меченых позитрон-излучающими радиоизотопами.
Любое ПЭТ исследование состоит из нескольких основных этапов:
1. производство радиоизотопа;
2. маркировка выбранного состава испускающим позитроны радионуклидом и подготовка состава в форме, пригодной для воздействия на людей;
3. транспортировка состава из лаборатории к месту проведения исследования;
4. воздействие радиоактивного индикатора и получение данных ПЭТ;
5. отображение распределения активности позитрона как функции времени, обработка данных;
6. интерпретация результата.
Система производства радиоизотопов состоит из трех основных частей:
- циклотрона (ускорителя частиц);
- биологического синтезатора, присоединяющего радиоизотопы к биологическим молекулам;
- компьютера, контролирующего процесс.
До начала исследования в циклотроне производится радиоактивное вещество, входящее в естественный химический состав тела (атомы кислорода, углерода, азота) и распадающееся с испусканием позитронов.
Произведенные на циклотроне радиоизотопы переносятся в биосинтезатор, где они присоединяются к используемым в клинике химическим составам, за распределением которых в теле хотят проследить. Естественно встречающиеся в органических составах атомы заменяются маркироваными (химически и биологически идентичными оригиналу). В ПЭТ маркируемые химические составы, ограничены воображением исследователей и временем полураспада. ............