МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра ИСЭ
Курсовая работа
«Контрольные системы управления»
Выполнила: студентка ЭФ гр. ПИЭ-32
Короткова А.М.
Научный руководитель:
доцент, к.э.н. Еклашева О.В.
Йошкар-Ола
2008
1. Планирование этапов производства (sf-2 algo)
1.1 Цель
Определить увеличится ли производительность завода при новом распределении этапов производства.
1.2 Описание
В машинном цехе расположены 3 вида станков: А, В и С. В этот цех поступают заказы, причем сначала в рабочую область, а оттуда в плановый отдел, где учитывается критерий наименьшей очереди заказов, распределенных по станкам. 50% заказов могут обрабатываться всеми станками, 30% только станками типа В или С, остальные 20% только станками типа С.
Но иногда обработка заказа машиной типа С занимает много времени. Тогда предполагается поступление минимального количества заказов из рабочей области в производственный цех. Это позволяет более рационально распределить заказы и сократить время на их обработку. Для этого в имитационную модель добавляются еще 2 элемента, один из которых отвечает за входящий поток заказов, а второй – за их сортировку по типам и за их направление в соответствующий буфер.
1.3 Операции
Рассмотрим структуру данной имитационной модели. Начнем по порядку.
Рабочий день состоит из 8 часов.
Settings | Time representation
60 units make 1 minute
60 minute make 1 hour
8 hour make 1 day
Время имитации модели равно одному дню.
Settings | Simulate| Stop time = 1day
Далее рассмотрим элементы, из которых построена модель и связи между ними.
Элементы – Inou_1, Inou_19 служат для генерации входящего потока заказов.
Элементы – Buff_2, Buff_20 сортируют заказы по типам и направляют их в соответствующий буфер.
Элементы – Buff _3, Buff_4, Buff_5, Buff_6, Buff_7, Buff_8 содержат очередь продуктов, принятых к исполнению.
Элементы с Mach_9 по Mach_14 отражают машины, обрабатывающие заказы.
Элементы – Buff_15, Buff_16 содержат уже готовые заказы, которые затем передают на выход.
Элементы – Inou_17, Inou_18 являются выходом для выполненных заказов.
По условию задачи, в заводской цех поступают заказы разных типов, из которых 50% обрабатывается всеми машинами, 30% - машинами типа В или С и 20% - машинами типа С. Поступление заказов задаётся эмпирическим распределением. Отсюда имеем:
Model | Elements | Job parameters
Element 1: Trigger on exit = product[C]:=empirical [1]
Element 19: Trigger on exit = product[C]:=empirical [2]
Заказ поступает каждые 5 единиц времени. Это время, через которое Элементы – Inou_1 и Inou_19 генерируют входящий поток заказов. Задаётся пуассоновским законом распределения:
Model | Elements | Job parameters
Element 1: Time = 5.0 Neg.Exp
Element 19: Time = 5.0 Neg.Exp
Так как заказы поступают случайным образом, то пропускная способность элементов Inou_1 и Inou_19 не тождественна. На выходе каждого генератора входящего потока заказам присваиваются свои номера или коды, которые определяют их путь. Например, 1, 2, 3 при выходе заказов из Inou_1 и 4, 5, 6 – из Inou_19. Это говорит о том, что заказы, вышедшие из первых трех буферов обрабатываются первыми тремя машинами, из последних трех буферов – последними тремя машинами. Все преобразования в каждом элементе InOut происходят в соотношении 50:30:20.
Рассмотрим элементы Buff_2 и Buff_20. ............