MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> курсовые

Название:курсовые
Просмотров:188
Раздел:Математика
Ссылка:Скачать(159 KB)
Описание:Асимптотические методы исследования интегралов с параметром Курсовая работа Выполнил: ст-т 4 курса Бутаев Г.Н. Дагестанский государственный университет Махачкала 2006 Введение Многочисленные задачи математ

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Асимптотические методы исследования интегралов с параметром

Курсовая работа

Выполнил: ст-т 4 курса Бутаев Г.Н.

Дагестанский государственный университет

Махачкала 2006

Введение

Многочисленные задачи математики, математической физики,механики,техники приводят к необходимости исследовать интегралы вида

при больших значениях параметра .

Можно по пальцам пересчитать те случаи,когда такие интегралы явно вычисляются.

С другой стороны,при больших значениях параметра вычисление значений таких интегралов не под силу даже самым современным ЭВМ.Единственное,что остается – это попытаться воспользоваться асимптотическими методами.

Асимптотические методы, к сожалению, также имеют свои границы. Не следует думать, что асимптотику любого интеграла вышеприведенного вида можно вычислить. Но в ряде случаев получающиеся асимптотические формулы настолько просты,что сомневаться в применении именно этих методов не приходится.

1.Основные формулы

Интегралами Лапласа называются интегралы вида

 , (1.1)

где -вещественнозначная функция,-большой положительный параметр.Функция

 может принимать комплексные значения.Будем считать для простоты,что конечный отрезок и что  -достаточно гладкие при  функции.Тривиальный

случай  не рассматривается.

 

рис.1

Пусть  и достигается только в точке .Тогда функция  имеет максимум в точке ,который тем резче,чем больше (рис.1).Интеграл  можно приближенно заменить интегралом по малой окрестности точки максимума , и это приближение будет тем точнее,чем больше .В этой окрестности функции  можно приближенно заменить по формуле Тейлора,и мы получим интеграл,асимптотика которого легко вычисляется.Этот метод был предложен Лапласом.

Пусть .Тогда ;пусть для простоты .Тогда

,

где - малое фиксированное число,и

, .

Следовательно,

.

Заметим,что .Последний интеграл равен

 (),

так как

.

Итак,мы получили асимптотическую формулу

 (). (1.2)

Пример 1.Вычислим интеграл

. ().

Здесь функция  на отрезке [-1,1] имеет максимум в точке  ;также

.Все вышеперечисленные условия выполняются, следовательно можно использовать формулу (1.2).

 .

Получили формулу:

. ().

Пример 2.Получим асимптотическое разложение гамма-функции Эйлера

Метод Лапласа непосредственно неприменим к этому интегралу, так как функция  не имеет максимума на данном интервале.

Представим подинтегральную функцию в виде

 

и сделаем замену переменной, положив .Тогда имеем:

.

Наш интеграл примет вид:

.

Это интеграл Лапласа: здесь  и .Функция  достигает максимума при , причем Поэтому по формуле (1.2) получаем

Получили формулу:

Из этой формулы непосредственно следует формула Стирлинга

так как  для любого натурального .

Пусть теперь  совпадает с одним из концов отрезка, например ,и пусть для простоты .Заменяя  интегралом по отрезку  и заменяя приближенно на этом отрезке функции

 , получаем,что

Заметим,что .Вычисляя последний интеграл,получаем

, () (1.3)

Пример 3.Вычислим интеграл

Здесь функция  на отрезке [0,2] имеет максимум в точке ; также

Следовательно, можно применить формулу (1.3):

Получили формулу:

По существу эти две формулы являются основными асимптотическими формулами для интегралов Лапласа.Нам удалось получить простые асимптотические формулы по двум следующим причинам:

1).Подытегральная функция имеет при больших  резкий максимум (т.е. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Интегральная атака против блочного симметричного шифра Crypton
Просмотров:265
Описание: ВВЕДЕНИЕ Стремительное развитие современных информационных технологий в Украине, начавшееся в конце XX века, не снижает своих темпов и в начале XXI века. Компьютерные технологии оказывают все большее влияние н

Название:Центральная Предельная Теорема и её приложения. Решение Определенного интеграла методом Монте-Карло
Просмотров:320
Описание: Введение. Центральная предельная теорема (ЦПТ) имеет огромное значение для применений теории вероятностей в естествознании и технике. Ее действие проявляется там, где наблюдаемый процесс подвержен влиянию боль

Название:Применение интегралов к решению прикладных задач
Просмотров:246
Описание: Министерство образования и науки Российской Федерации Министерство образования Московской области Московский Государственный Областной Педагогический Институт Физико-математический факультет. Курсо

Название:Теория эллиптических интегралов и эллиптических функций
Просмотров:208
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Амурский государственный университет (ГОУ ВПО «АмГУ») Кафедра математического а

Название:Приложение интегрального и дифференциального исчисления к решению прикладных задач
Просмотров:380
Описание: Федеральное Агентство по образованию Государственное образовательное учреждение высшего профессионального образования Московский Государственный Институт Стали и Сплавов (технологический университ

 
     

Вечно с вами © MaterStudiorum.ru