Часть полного текста документа:Лазерное охлаждение в твердых телах Научная работа по физике Работу выполнил Фейман Евгений Самарский муниципальный университет Наяновой Самара 2000 год Введение В последнее время в квантовой оптике активно изучается лазерное охлаждение. Особое внимание при исследовании этих явлений уделялось газообразным средам, гораздо менее изучены эти явления в твердых телах. Представляется, что при исследовании когерентных квантовоопт должны играть фононные степени свободы. Теоретические работы по исследованию лазерного охлаждения в твердых телах основывафизики и приводят к очень сложным уравнениям, описывающим динамику системы. Однако объяснение этого эффекта возможно и без привлечения сложного математического аппарата, а с использованием элементарного полуклассического подхода, аналогичного полуклассической теории Эйнштейна, использованной для изучения взаимодействия излучения с веществом. Целью настоящей работы является изучение лазерного охлаждения в твердых телах на основе элементарной полуклассической теории с использованием простейших вероятностных соотношений. Лазерное охлаждение Одной из проблем рассматриваемых в настоящей работе является проблема лазерного охлаждения твердых тел. При комнатной температуре атомы и молекулы, из которых состоит воздух, двигаются в различных направлениях со скоростью около 4000км/час. Такие атомы и молекулы трудно изучать, потому что они слишком быстро исчезают из области наблюдения. Понижая температуру, можно уменьшить скорость, однако проблема состоит в том, что при охлаждении газы обычно вначале конденсируются в жидкость, а затем вымораживаются в твердое состояние. В жидкостях и в твердых телах исследование становится более трудным, так как одиночные атомы и молекулы оказываются слишком близко друг к другу. Стивен Чу, Клод Коэн-Тануджи и Уильям Д. Филипс развили методы, позволяющие с помощью лазерного света охлаждать газы до температур порядка микрокельвина и удерживать холодные атомы, плавающие или захваченные в различного рода "атомных ловушках". Лазерный свет действует как вязкая жидкость, так называемая оптическая патока, в которой атомы замедляются. Так можно с очень высокой точностью изучать отдельные атомы и определять их внутреннюю структуру. По мере того, как в одном и том же объеме захватываются все больше и больше атомов, образуется разреженный газ, и его свойства могут быть детально изучены. Новые методы исследования, развитые нобелевскими лауреатами, вносят большой вклад в наши знания о взаимодействии между излучением и веществом. Лазерные ловушки позволяют удерживать живые клетки и органеллы в клетках, не прокалывая клеточную мембрану. Одиночные молекулы ДНК используются для изучения фундаментальных вопросов динамики полимеров. Эксперименты по лазерному охлаждению стали впечатляющей демонстрацией механического действия света, но этот эффект имеет значительно более длинную историю. Понимание того, что электромагнитное излучение оказывает давление, приобрело количественную основу только после создания Максвеллом теории электромагнетизма, хотя такие предположения высказывались значительно раньше, в частности, что хвосты комет вытянуты в противоположную сторону от солнца. ............ |