РЕФЕРАТ
на тему:”МАГНІТНЕ ПОЛЕ РУХОМОГО ЗАРЯДУ. ЯВИЩЕ ЕЛЕКТРОМАГНІТНОЇ ІНДУКЦІЇ”
План
1. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі
2. Ефект Холла. Магнітогазодинамічний генератор та його використання
3. Явище електромагнітної індукції
4. Самоіндукція. Індуктивність. Е.р.с. самоіндукції
1. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі
Покажемо, що будь-яка заряджена частинка в процесі руху утворює у навколишньому просторі магнітне поле.
Скористаємось законом Біо – Савара – Лапласа для елементу струму:
, (12.1.1)
де - магнітна проникність середовища (для не феромагнетиків наближено дорівнює одиниці); о – магнітна стала (); I – струм у провіднику; - елемент провідника; - відстань від елементу струму, до точки знаходження індукції магнітного поля; - кут між елементом провідника і радіусом-вектором .
Струм I у провіднику виразимо через густину струму j переріз S, а саме
. (12.1.2)
Густину струму виразимо із електронної теорії
, (12.1.3)
де n – концентрація вільних носіїв струму в провіднику; qo – елементарний заряд; - середня швидкість направленого руху носіїв струму в провіднику.
Підставимо (12.1.2) і (12.1.3) у (12.1.1), одержимо
. (12.1.4)
Напрям вектора збігається з напрямком , тому
.
Замінимо у співвідношенні (12.1.4) Sdl на dV і ndV на dN, одержимо
, (1 2.1.5)
де dB - індукція магнітного поля, яка створюється dN зарядами на відстані r від елемента струму, у якому рухаються ці заряди.
Магнітне поле одного рухомого заряду легко розрахувати, поділивши ліву і праву частини (12.1.5) на dN:
, (12.1.6)
де B0 - магнітне поле одного рухомого заряду (рис. 12.1); qo – величина цього заряду; - середня швидкість направленого руху заряду.
Рис. 12.1
На рис.12.1 індукція магнітного поля одного заряду є дотичною до силової лінії, яка має напрям обертання правого гвинта.
У векторній формі індукція магнітного поля рухомого заряду записується так
. (12.1.7)
Оскільки рухомий електричний заряд в навколишньому просторі створює магнітне поле, то з сторони зовнішнього поля на цей заряд має діяти магнітна сила. Цю силу називають силою Лоренца.
Величину сили Лоренца визначимо, скориставшись силою Ампера
, (12.1.8)
де - сила, з якою зовнішнє магнітне поле діє на елемент провідника із струмом .
Замінюємо струм I на густину струму в провіднику j і його значення з електронної теорії
,
де n – концентрація носіїв струму в провіднику; q0 – елементарний позитивний заряд; - середня швидкість направленого руху носіїв струму; S – переріз провідника.
У цьому випадку сила Ампера буде дорівнювати
, (12.1.9)
де - сила, з якою зовнішнє магнітне поле діє на магнітні поля всіх рухомих електричних зарядів, які є у виділеному елементі dl провідника.
Оцінимо число рухомих електричних зарядів у елементі струму Idl, яке в нашому випадку дорівнює
nSdl = dN.
Поділимо (12.1.9) на указане число електричних зарядів dN й одержимо
, (12.1.10)
де - сила Лоренца – сила з якою зовнішнє магнітне поле діє на магнітне поле окремого електричного заряду; qo - величина елементарного заряду; - середня швидкість направленого руху носіїв струму; B - індукція зовнішнього магнітного поля.
У векторній формі сила Лоренца записується так:
. ............