Часть полного текста документа:БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ФИЛОСОФИИ И МЕТОДОЛОГИИ НАУКИ Реферат по философии на тему "Математическая гипотеза в неклассической физике" Аспиранта кафедры теоретической физики Иванова Алексея Алексеевича Минск, 2001 Содержание. Введение 3 1. Основные принципы построения математической гипотезы 5 2. Применение метода математической гипотезы в развитии физических теорий 13 Заключение 27 Список литературы 28 Введение. Современная теоретическая физика в своих исследованиях пользуется широким набором методов, реализующих все общечеловеческие способы познания через систему специфических приёмов, характерных именно для теоретического уровня исследования. К ним относятся метод мысленного эксперимента, ставящий своей задачей построение абстрактных объектов как теоретических образов реальной действительности и оперирование ими с целью изучения существенных характеристик действительности (принцип относительности Галилея); идеализация, то есть выделение одного или нескольких необходимых условий существования объекта и сведение его действия к минимуму путём его изменения (молекулярно-кинетическая теория газов, теория тепловых двигателей Карно); формализация, построение абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности; аксиоматический метод, строящийся на основе не требующих доказательства постулатов (геометрия Евклида, механика Ньютона, специальная теория относительности Эйнштейна); гипотетико-дедуктивный метод, создание системы связанных между собой гипотез, приводящей в конечном счёте к утверждениям об эмпирических фактах (электродинамика Лоренца); метод восхождения от абстрактного к конкретному, выделение главной связи изучаемого объекта и открытие новых связей на основе изучение видоизменения главной в различных условиях; метод математической гипотезы. Знания современной теоретической физики могут быть рассмотрены как математический аппарат, получающий интерпретацию на объектах реальности. Она состоит как бы из двух частей. Первую часть составляют высказывания, образующие интерпретацию физических величин. Они указывают, как связать теоретические символы, обозначающие эти величины, со свойствами конкретных объектов опыта. Вторая часть - это уравнения теории, например, уравнения Максвелла, Ньютона, Шрёдингера, образующие математический аппарат теории. Причём при изменении математического аппарата изменяется и смысл физических величин, а, применяя правила связи физических величин с эмпирической реальностью, можно придать им такой новый смысл, которой будет противоречить их прежним математическим связям в уравнениях, и, чтобы сохранить математику, придётся искать другие уравнения. Классическая физика вначале создавала первую часть физической теории (интерпретацию), а только затем - математический аппарат. Поэтому смысл физических величин был ясен с самого начала, основные усилия исследователей в этом случае направлялись на то, чтобы отыскать математические формы, связывающие эти величины. В современной физике применяется другой путь, когда исследователь вначале стремится отыскать математический аппарат, оперирует с величинами, о смысле которых заранее ничего не знает, подмечает в исследуемых явлениях некоторые сходные с другими явлениями черты, для которых уравнения уже построены, стремится перебросить эти уравнения на новую область изучаемой действительности. ............ |