Практическая работа
по курсу «Математические модели окружающей среды»
Задано временное изменение уровня воды в некоторых пунктах за период примерно в 170 лет.
Применить методы математической статистики для оценки характеристик и качества имеющихся данных наблюдений. Выполнить прогноз подъема уровня воды на будущее и проверить качество прогноза на уже имеющихся данных.
1. Рассчитать моменты ряда (среднее и среднеквадратичное значение), построить функцию распределения и плотность функции распределения. Выполнить ее аппроксимацию теоретическими зависимостями.
Рис. 1.1. Изменение уровня воды за период в 102 года
Минимальный уровень воды = 0.06328, максимальное значение уровня = 0.6792
Заменим простой статистический ряд на статистический ряд с меньшим числом слагаемых, равным 100. И для такого ряда рассчитаем частоту события (в качестве события берем средний уровень воды).
Таким образом, имеем 100 интервалов, для каждого вычисляется частота события (число событий в статистическом ряде, когда X = x, к общему числу событий)
.
В нашем случае имеем N=1024 события, а m – число уровней, попавших i-ый интервал Очевидны свойства этой частоты
Частоту различных уровней воды можно изобразить графически
Рис. 1.2. График зависимости частоты от среднего уровня воды
Статистическая функция распределения есть «частота» события Х < x в данном статистическом интервале
.
Рис. 1.3. Функция распределения
Эта функция F*(x) является неубывающей со следующими пределами:
F*(x ® –¥) = 0, F*(x ® + ¥) = 1.
С функцией распределения F(x) связана плотность функции распределения f(x)
.
которая удовлетворяет следующим соотношениям:
f(x) ³ 0, ò f(x) dx = 1,
Рис. 1.4. Плотность функции распределения
Была выполнена аппроксимация плотности функции распределения теоретическими зависимостями: полиномами 6-ой, 9-ой, 15-ой степени, тригонометрическими многочленами. Оптимальным приближением оказался полином 9-ой степени.
В качества критерия оптимальной аппроксимации использовали критерий Пирсона
Рис. 1.5. Аппроксимация плотность функции распределения полиномом 9-ой степени
Для нового ряда по имеющимся данным можно рассчитать математическое ожидание, характеризующее среднее значение уровня воды
,
и среднеквадратичное отклонение, характеризующее средний разброс этих значений:
s*=.
где - дисперсия:
xi – среднее значение случайной величины внутри разряда.
В нашем случае, средний уровень воды равен 0.41, а среднеквадратичное отклонение – 0.119
2. В какой степени данный ряд является стационарным? На каких временах данный ряд можно считать стационарным? Дать оценки моментов для «кусков» ряда и построить гистограммы оценок
Для того чтобы ряд был стационарным, должны быть выполнены условия
- корреляционная функция не зависит от времени
математическое ожидание
- дисперсия
-
Для проверки стационарности делим исходный ряд на кусков, и для каждого такого куска проверяем выполнение трех условий.
– Корреляционная функция.
Фиксируем , где N – количество точек.
Считаем автокорреляционную функцию для первого отрезка, а затем – корреляционную функцию для каждых двух соседних кусков. ............