MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Математический анализ. Практикум

Название:Математический анализ. Практикум
Просмотров:151
Раздел:Математика
Ссылка:Скачать(773 KB)
Описание: Математический анализ. Практикум. Для студентов ВУЗов по специальности: «Государственное и муниципальное управление» Т.З. Павлова Колпашево 2008 Г

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Математический анализ.

Практикум.

Для студентов ВУЗов по специальности:

«Государственное и муниципальное управление»

Т.З. Павлова

Колпашево 2008


Глава 1. Введение в анализ

1.1 Функции. Общие свойства

1.2 Теория пределов

1.3 Непрерывность функции

Глава 2. Дифференциальное исчисление

2.1 Определение производной

2.2 Основные правила дифференцирования

2.3 Производные высших порядков

2.4 Исследование функций

2.4.1 План полного исследования функции

2.4.2 Примеры исследования функции

2.4.3. Наибольшее и наименьшее значение функции на отрезке

2.5 Правило Лопиталя

Глава 3. Интегрально исчисление

3.1 Неопределенный интеграл

3.1.1 Определения и свойства

3.1.2 Таблица интегралов

3.1.3 Основные методы интегрирования

3.2 Определенный интеграл

3.2.1 Понятие определенного интеграла и его свойства

3.2.2 Методы вычисления определенного интеграла

3.2.3 Приложения определенного интеграла

Глава 4. Функции нескольких переменных

4.1 Основные понятия

4.2 Пределы и непрерывность функций нескольких переменных

4.3 Производные и дифференциалы функций нескольких переменных

4.3.1 Частные производные первого порядка

4.3.2 Частные производные второго порядка

4.3.3 Полный дифференциал и его применение к приближенным вычислениям

4.3.4 Дифференцирование неявной функции

Глава 5. Классические методы оптимизации

5.2 Глобальный экстремум (наибольшее и наименьшее значение функции)

Глава 6. Модель потребительского выбора

6.1 Функция полезности.

6.2 Линии безразличия

6.3 Бюджетное множество

6.4 Теория потребительского спроса

Задания для домашней контрольной работы

Литература


Глава 1. Введение в анализ

1.1 Функции. Общие свойства

Числовая функция определена на множестве D действительных чисел, если каждому значению переменной поставлено в соответствие некоторое вполне определенное действительное значение переменной y, где D – область определения функции.

Аналитическое представление функции:

в явном виде: ;

в неявном виде: ;

в параметрической форме: 

разными формулами в области определения :

 

Свойства.

Четная функция: . Например, функция  – четная, т.к. .

Нечетная функция: . Например, функция  – нечетная, т.к. .

Периодическая функция: , где T – период функции, . Например, тригонометрические функции.

Монотонная функция. Если для любых  из области определения  – функция возрастающая,  – убывающая. Например,  – возрастающая, а – убывающая.

 Ограниченная функция. Если существует такое число M, что . Например, функции  и , т.к. .

Пример 1. Найти область определения функций.

       + 2 – 3 +

1.2 Теория пределов

 

Определение 1. Пределом функции  при  называется число b, если для любого  ( – сколь угодно малое положительное число) можно найти такое значение аргумента , начиная с которого выполняется неравенство .

Обозначение: .

Определение 2. Пределом функции  при  называется число b, если для любого  ( - сколь угодно малое положительное число) существует такое положительное число , что для всех значений x, удовлетворяющих неравенству  выполняется неравенство .

Обозначение: .

Определение 3. Функция  называется бесконечно малой при  или , если или .

Свойства.

1.  Алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая.

2.  Произведение бесконечно малой величины на ограниченную функцию (постоянную, другую бесконечно малую величину) есть величина бесконечно малая.

3.  Частное от деления бесконечно малой величины на функцию, предел которой отличен от нуля, есть величина бесконечно малая.

Определение 4. Функция  называется бесконечно большой при , если .

Свойства.

1.  Произведение бесконечно большой величины на функцию, предел которой отличен от нуля, есть величина бесконечно большая.

2.  Сумма бесконечно большой величины и ограниченной функции есть величина бесконечно большая.

3.  Частное от деления бесконечно большой величины на функцию, имеющую предел, есть величина бесконечно большая.

Теорема. (Связь между бесконечно малой величиной и бесконечно большой величиной.) Если функция  бесконечно малая при  (), то функция  является бесконечно большой величиной при  (). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Мифология. Функции мифа. Мифологические школы
Просмотров:732
Описание: Мифология как мир первообразов и материя духовности Но для создателей мифологии она была не просто достоверной или истинной. У них и вопроса не могло возникнуть об истинности. Для первобытного человека мифология

Название:Общественные функции СМИ. По кн. Введение в журналистику
Просмотров:821
Описание: Цвик В. Л. Для чего существует журналистика? Зачем она нужна отдельному индивиду и обществу в целом? Иными словами, каковы социальные функции СМИ? Сразу условимся, что термин "функции” мы будем понимать как разн

Название:Понятие, задачи, система и основные функции органов внутренних дел
Просмотров:707
Описание: Органы внутренних дел представляют собой сложную, разветвленную систему, в которую входят в качестве ее функциональных элементов (подсистем) милиция, пожарная охрана, внутренние войска, следственный аппарат и др. О

Название:Функции культурных норм
Просмотров:646
Описание: Культурные нормы выполняют в обществе очень важные функции. Они являются обязанностями и указывают меру необходимости в человеческих поступках; служат ожиданиями в отношении будущего поступка; контролируют откл

Название:Психологическая теория деятельности: действия и цели; операции; психофизиологические функции
Просмотров:451
Описание: Гиппенрейтер Ю.Б. Психологическая теория деятельности была создана в советской психологии и развивается уже на протяжении более 60 лет. Она обязана работам советских психологов: Л.С. Выготского, С.Л. Рубинштейна, А

 
     

Вечно с вами © MaterStudiorum.ru