Часть полного текста документа:Математика хаоса и первые шаги теоретической истории Анна Шмелева. На рубеже тысячелетий все чаще приходится слышать об изменении императивов развития цивилизации, глобальных демографических прогнозах и стратегическом планировании будущего человечества. Специалисты обращаются к математическим методам моделирования исторических процессов. Все это - ключевые понятия новой науки о человеческом обществе. Старое название "история" трещит по швам, поскольку прошлое этой наукой изучается наравне с настоящим и будущим. Она имеет дело с сослагательным наклонением, рассматривает особенности, перспективы и тенденции каждого момента и отличает свершившееся от возможного лишь по координатам на шкале времени. Обычно компьютер в руках историка ассоциируется или с мультимедиа-энциклопедией, или с игрой "Цивилизация". На самом же деле вопрос куда серьезнее. С 1986 года существует Международная ассоциация History and Computing (AHC), имеющая теперь подразделение в России; в университетах Западной Европы введена специализация по профилю History&Computing, а с 1989 года выходит международный журнал по исторической информатике. В работе AHC выделилось направление, связанное с математическим моделированием истории. Трудно поверить, что это реально. Традиционно история считалась гуманитарной наукой. Расчетная задача всегда казалась далеко за пределами мыслимых мощностей - не вычислять же, в самом деле, каждую линию человеческой судьбы, каждое столкновение интересов, каждое решение, озарение и ошибку! Тем более, что весь этот коктейль жизни щедро заправлен субстанцией, именуемой стечением обстоятельств или случайностью. Однако отметим, что историческая случайность - совсем не то, что случайность математическая. Строго говоря, в истории вовсе нет случайности. В математике случайные процессы принято называть также стохастическими (пример - бросание монетки), а сюрпризы, которые дарит нам судьба, обычно имеют совершенно другое происхождение. Допустим, вы повстречали в метро одноклассника, которого не видели несколько лет. Накануне вы получили зарплату и отправились на метро за давно планируемой покупкой. Обычно вы ездите на троллейбусе, но из-за гололеда решили, что метро будет надежнее... Вы купили магнитную карточку и пропустили один поезд, сверяя часы. Ваш одноклассник, в свою очередь, планировал выехать несколько раньше, но его начальник по скверной своей привычке остановил его на пороге и полчаса проводил дополнительный инструктаж. И вот в результате в разгар дня вы оказались в одном вагоне метро. Случайна ли эта встреча? С одной стороны, да, ведь вы ее никак не ожидали. С другой же - среди ее причин нет ни одного случайного, с математической точки зрения, события. Никто из вас, принимая решение, не кидал монетку. Каждый ваш шаг чем-то объяснялся и сам объяснял то, что произошло в дальнейшем. Вы сели в последний вагон поезда, чтобы оказаться ближе к выходу, а он - потому что спешил и вбежал в двери в последний момент. Вы сверяли свои часы, поскольку они у вас ходят не очень точно, и купили двухразовую карточку потому, что редко пользуетесь метро. Что-то подобное можно сказать и о вашем знакомом, и о машинисте поезда, и о каждом человеке, который повстречался вам по пути. ............ |