Содержание
1. MathML (Mathematical Markup Language)
1.1 Математика и ее система обозначений
1.2 Истоки и цели
1.2.1 История MathML
1.2.2 Ограниченность HTML
1.2.3 Требования к математической разметке
1.2.4 Цели проекта MathML
1.3 Роль MathML в Сети
1.3.1 Существующие языки математической разметки
1.3.2 Механизм расширения HTML
1.3.3 Механизм расширения браузера
1.4 Обзор MathML
1.4.1 Таксономия элементов MathML
1.4.2 Разметка представления
1.4.3 Разметка содержания
1.4.4 Объединение представления и содержания
1.5 MathML в документах
1.6 Примеры MathML
1.6.1 Примеры разметки представления
1.6.2 Примеры разметки содержания
1.6.3 Примеры смешанной разметки
1.7 Синтаксис и грамматика MathML
1.7.1 Синтаксис и грамматика MathML
1.7.2 Пример синтаксиса XML
1.7.3 Дочерние элементы против аргументов
1.7.4 Значения атрибутов MathML
1.7.4.1 Синтаксические нотации, используемые в спецификации MathML
1.7.4.2 Атрибуты с единицами измерения
1.7.4.3 CSS-совместимые атрибуты
1.7.4.4 Значения атрибутов по умолчанию
1.7.4.5 Значения атрибутов в MathML DTD
1.7.5 Атрибуты, общие для всех элементов MathML
1.7.6 Свертывание пробелов во вводе
2. Возможности современных браузеров при работе с MathML
2.1 Mozilla & Firefox
2.2 Microsoft Internet Explorer
2.3 Opera
Список использованной литературы
1. MathML (Mathematical Markup Language) MathML (Mathematical Markup Language) представляет собой язык разметки математических приложений, основанный на XML. Он был разработан Консорциумом WWW (W3C) и принят в качестве Рекомендации. Текущей версией является Mathematical Markup Language (MathML) Version 2.0 (Second Edition), утвержденной 21 октября 2003 года.
MathML реализует две "точки зрения" на математическую разметку. Один из ее видов - это разметка представления (Presentation Markup), которая описывает визуальную форму представления математической формулы. Второй - разметка содержания (Content Markup), выражающая семантическое содержание.
MathML рассматривает не только представление, но и смысл элементов формулы. Также разрабатывается система разметки математической семантики, призванная дополнить MathML. Она называется OpenMath.
1.1 Математика и ее система обозначений Характерной чертой математической информации является использование сложной и высокоразвитой двумерной символьной системы обозначений. Однако, как писал J. R. Pierce в своей книге по теории коммуникации, математика и ее нотация не должны рассматриваться как одно и то же. Математические идеи существуют независимо от способа их представления. Тем не менее, взаимосвязь между значением и обозначением весьма тонка, и в возможности представлять и манипулировать идеями в символьной форме кроется значительная мощь математического аппарата, как инструмента описания и анализа. Основная трудность при внедрении математики в World Wide Web состоит в том, чтобы зафиксировать как представление, так и содержание (то есть значение) таким образом, чтобы в документах максимально использовать высокоразвитую систему математической нотации и потенциал взаимодействия в электронных средствах информации.
Математическая система обозначений постоянно развивается, так как люди постоянно совершенствуют способы представления идей. Даже стандартная система обозначения арифметических действий прошла через удивительное многообразие стилей, включая множество ныне несуществующих, поддерживающих математические обозначения своего времени. ............