MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Метод замены неизвестного при решении алгебраических уравнений

Название:Метод замены неизвестного при решении алгебраических уравнений
Просмотров:75
Раздел:Математика
Ссылка:Скачать(204 KB)
Описание: Введение Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает соврем

Часть полного текста документа:

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это всё так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

В элементарной математике выделяют два вида уравнений: алгебраические и трансцендентные. К алгебраическим уравнениям относятся:

1.          линейное;

2.          квадратное;

3.          кубическое;

4.          биквадратное;

5.         уравнение четвертой степени общего вида;

6.          двучленное алгебраическое уравнение n-й степени;

7.         степенное алгебраическое;

8.         – возвратное (алгебраическое);

9.          – алгебраическое уравнение ой степени общего вида;

10.      дробные алгебраические уравнения, т.е. уравнения, содержащие многочлены и алгебраические дроби (дроби вида , где  и  – многочлены);

11.      иррациональные уравнения, т.е. уравнения, содержащие радикалы, под которыми располагаются многочлены и алгебраические дроби;

12.      уравнения, содержащие модуль, под модулем которых содержатся многочлены и алгебраические дроби.

Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. В нашей работе рассмотрим подробнее алгебраические уравнения.

В учебной и методической литературе традиционно рассматриваются специальные приёмы решения уравнений. Между тем специфика решения уравнений каждого раздела – дело второстепенное. По существу, применяются четыре основных метода:

• замена уравнения h (f(x))=h (g(x)) уравнением f(x)=g(x);

• метод замены переменной;

• метод разложения на множители;

• функционально-графический метод и их различные модификации.

Самый распространённый из них – метод замены переменной.

Исходя из этого, мы формулируем цель своей работы: изучить возможности метода замены неизвестного при решении алгебраических уравнений и продемонстрировать их применение в стандартных и нестандартных ситуациях. Для того, чтобы достичь поставленной цели необходимо решить следующие задачи:

1.         Раскрыть содержание основных понятий и утверждений, относящихся к теории решения уравнений: решение уравнения, равносильность и следствие, общие методы решения уравнений.

2.         Выявить возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ситуациях.

3.         Осуществить типизацию приёмов введения новых неизвестных при решении алгебраических уравнений и выявить критерии их применимости

4.         Составить комплект типовых задач, сводящихся к применению метода замены при решении уравнений, и продемонстрировать их решение.


1. Основные понятия и утверждения, относящиеся к теории решения уравнений

В первой главе нашей работы раскроем содержание основных понятий и утверждений, относящихся к теории решения уравнений.

С понятием «уравнение» на уроках математики мы знакомимся уже в начальной школе, а задача «решить уравнение», вероятно, наиболее часто встречающаяся задача. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Программирование системы уравнений
Просмотров:97
Описание: Содержание Введение 1 Постановка задачи 2 Решение системы уравнения методом Гаусса 3 Решение уравнения методами Ньютона, Хорд 4 Разработка блок схемы решения системы уравнения методом Гаусса 5 Разрабо

Название:Системы линейных и дифференциальных уравнений
Просмотров:150
Описание: к/р № 1 1.  Решить матричные уравнения и сделать проверку.   Решение:   Найдём обратную матрицу . Обратной для матрицы А есть матрица , где  - определитель матрицы А, а элементы матрицы A*

Название:Приближённое решение алгебраических и трансцендентных уравнений
Просмотров:115
Описание:        Приближённое решение алгебраических и трансцендентных  уравнений 1. Общая постановка задачи. Найти действительные корни уравнения , где - алгебраическая или трансцендентная функция. Точные методы реш

Название:Нестандартные методы решения уравнений и неравенств
Просмотров:226
Описание: СОДЕРЖАНИЕ ВВЕДЕНИЕ 1 ИСТОРИЧЕСКАЯ СПРАВКА 2 РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ     2.1 Использование монотонности функции 2.2 Использование ограниченности функции 2.3 Использование перио

Название:Нестандартные методы решения тригонометрических уравнений: графический и функциональный
Просмотров:132
Описание: Фрунзенский район Технологическая гимназия №13 г. МинскаАвторы: Кравченко Арсений Борисович ученик 9”Д” класса ул. Горецкого 69-263 д.т. 215-84-33 Ермолицкий Алексей Александрович ученик 9”Д” класса ул.

 
     

Вечно с вами © MaterStudiorum.ru