MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Коммуникации и связь -> Методи перетворення біосигналів та аналіз медико-біологічної інформації

Название:Методи перетворення біосигналів та аналіз медико-біологічної інформації
Просмотров:630
Раздел:Коммуникации и связь
Ссылка:Скачать(93 KB)
Описание: МЕТОДИ ПЕРЕТВОРЕННЯ БІОСИГНАЛІВ ТА АНАЛІЗ МЕДИКО-БІОЛОГІЧНОЇ ІНФОРМАЦІЇ Сигнал – процес зміни у часі фізичного стану певного об'єкта, який можна зареєструвати, відобразити

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

МЕТОДИ ПЕРЕТВОРЕННЯ БІОСИГНАЛІВ ТА АНАЛІЗ

МЕДИКО-БІОЛОГІЧНОЇ ІНФОРМАЦІЇ


Сигнал – процес зміни у часі фізичного стану певного об'єкта, який можна зареєструвати, відобразити та передати.

Детерміновані сигнали – сигнали, значення яких у будь-який момент часу повністю відомі, тобто передбачувані з імовірністю, що дорівнює одиниці.

Випадкові сигнали – сигнали, значення яких у будь-який момент часу неможливо передбачити з імовірністю, що дорівнює одиниці.

Періодичним називається будь-який сигнал, для якого виконується умова

,

де період Т є кінцевим відрізком, а k – будь-яке ціле число.

Сигнали, що існують в усі моменти часу, називають аналоговими.

Послідовність чисел, що подає сигнал при цифровій обробці, називається дискретним сигналом. Числа, що складають послідовність, є значеннями сигналу в окремі (дискретні) моменти часу й називаються відліками. Переважно відліки беруть через рівні проміжки часу Тд, що мають назву період дискретизації (або крок дискретизації). Величина, зворотна періоду дискретизації, називається частотою дискретизації

,

відповідна їй кругова частота

.

Процес перетворення відліків сигналу в числа називається квантуванням за рівнем.

Сигнал, дискретний у часі та квантований за рівнем, називають цифровим сигналом.

Динамічним поданням називається спосіб подання сигналів, при якому реальний сигнал приблизно подається сумою деяких елементарних сигналів, що виникають у послідовні моменти часу. Якщо спрямувати до нуля тривалість окремих елементарних сигналів, то границя суми дасть точне подання вихідного сигналу.

Два сигнали u і v називають ортогональними, якщо їх скалярний добуток, а отже, і взаємна енергія дорівнюють нулю:

.

Якщо в просторі сигналів задана нескінченна система ортогональних функцій {a1, a2, …, an} з одиничними нормами

це означає, що в просторі сигналів заданий ортонормований базис.

Розкладання сигналу:

,

де сk – «проекції» сигналу на координатні вісі, напрямок яких задається функціями hk(t), називається узагальненим рядом Фур'є сигналу s(t) в обраному базисі.

Сукупність коефіцієнтів ряду Фур'є {ck} – спектр сигналу s(t).

Тригонометричний ряд Фур'є:

,

де t0 – довільна величина;

 – період базисних функцій;

 – кругова частота, що відповідає періоду повторення сигналу Т; частоти, кратні w0, що входять у формулу, називаються гармоніками;

;

;

.

Дійсна форма тригонометричного ряду Фур'є:

,


де

;

;

.

Експоненційний ряд Фур'є:

; ,

де

.

Сукупність амплітуд гармонік ряду Фур'є називають амплітудним спектром.

Сукупність фаз гармонік ряду Фур'є називають фазовим спектром.

Коефіцієнти ряду залежать тільки від форми одиночного імпульсу s(t) і характеризуються інтегралом:

,

який називається спектральна щільність одиночного імпульсу s(t).

Періодичне коливання має дискретний або лінійчатий спектр.

Відношення періоду послідовності прямокутних імпульсів до тривалості імпульсів називають щілинністю.

Амплітудний спектр послідовності прямокутних імпульсів має вигляд функції , графік якої носить пелюстковий характер.

Важливою властивістю спектра послідовності прямокутних імпульсів є те, що у ньому відсутні (мають нульові амплітуди) гармоніки з номерами, кратними щілинності.

Відстань за частотою між сусідніми гармоніками спектра періодичного сигналу дорівнює частоті імпульсів 2p/Т.

Ширина пелюсток спектра послідовності прямокутних імпульсів, виміряна в одиницях частоти, дорівнює 2p/t, тобто зворотно пропорційна тривалості імпульсів.

Часове й частотне подання неперіодичного сигналу, що заданий на інтервалі (-¥, ¥), складає пару перетворень Фур'є:

 – зворотне перетворення Фур'є,

 – пряме перетворення Фур'є.

Неперіодичні сигнали мають безперервний (суцільний) спектр.

Властивість спектра: чим коротше сигнал, тим ширше його спектр.

Добуток ефективних значень тривалості сигналу й ширини його спектра називається базою сигналу.

Дуальність перетворення Фур'є: якщо парній функції часу f(t) відповідає спектральна функція g(w) (вона буде також парною), то функції часу g(t) відповідатиме спектральна функція 2pf(w).

Прямокутному імпульсу відповідає спектральна функція, що має вигляд sin(w)/w. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Методи перетворення біосигналів та аналіз медико-біологічної інформації
Просмотров:630
Описание: МЕТОДИ ПЕРЕТВОРЕННЯ БІОСИГНАЛІВ ТА АНАЛІЗ МЕДИКО-БІОЛОГІЧНОЇ ІНФОРМАЦІЇ Сигнал – процес зміни у часі фізичного стану певного об'єкта, який можна зареєструвати, відобразити

Название:Световое излучение в ультрафиолетовой, видимой и инфракрасной областях спектра
Просмотров:486
Описание: План   Введение 1.  Формирование катодолюминесцентного излучения 1.1 Генерация неравновесных носителей заряда 1.2 Движение и рекомбинация неравновесных носителей 2.  Пространственное разрешение

Название:Расчет электронной схемы включения приемника излучения, согласованной с усилительной схемой по сигналу
Просмотров:396
Описание: МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра Светотехники Типовой расчет по курсу «Приемники излучения» «Расчет электронной схемы включения приемника изл

Название:Тривимірні перетворення
Просмотров:363
Описание: Вступ Для кращого сприйняття форми об'єкта необхідно мати його зображення в тривимірному просторі. У багатьох випадках наочне представлення про об'єкт можна одержати шляхом виконання операцій обертання і пе

Название:Атомно-эмиссионный спектральный анализ
Просмотров:346
Описание: Негосударственное некомерческое образовательное учреждение среднего профессионального образования "покровский горный колледж" Контрольная работа Атомно-эмиссионный спектральный ан

 
     

Вечно с вами © MaterStudiorum.ru